

Current Transducer HTA 1000-S/SP9

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

$I_{PN} = 1000 A$

Electrical data

I_{PN}	Primary nominal RMS current	1000	Α
I_{PM}	Primary current, measuring range	0 ±1000	Α
U_{out}	Output voltage (Analog) @ I_{PN}	±10	V
$R_{\scriptscriptstyle \parallel}$	Load resistance	> 2	kΩ
U_{c}	Supply voltage (±10 %)	±15	V
I_{C}	Current consumption	< 25	mA
R_{INS}	Insulation resistance @ 500 V DC	> 500	$M\Omega$

Accuracy - Dynamic performance data

ε	Error ¹⁾ @ I_P = 1000 A, T_A = 25 °C, @ ±15 V	±1	% of I_{PN}
ε_{L}	Linearity error $(0 \dots \pm I_{PN})$	±0.5	%
U_{OE}	Electrical offset voltage, @ I_P = 0, T_A = 25 °C	< ±10	mV
U_{OM}	Magnetic offset voltage, @ $I_p = 0$,		
	after an overload of 3 × I_{PN}	< ±25	mV
TCU_{OE}	Temperature coefficient of U_{OE}	< ±1	mV/K
TCU_{out}	Temperature coefficient of U_{out}	$< \pm 0.05$	%/K
t _{D 90}	Delay time to 90 % of I_{PN} step ²⁾	< 3	μs
BW	Frequency bandwidth (-3 dB) 3)	DC 50	kHz

General data

T_{A}	Ambient operating temperature	−25 + 70	°C	
$T_{\rm S}$	Ambient storage temperature	−25 + 85	°C	
m	Mass	300	g	
	Standard	EN 50178: 199	EN 50178: 1997 4)	

Notes: 1) Excludes the electrical offset

- ²⁾ For a di/dt = 50 A/µs
- 3) Refer to derating curves in the technical file to avoid excessive core heating at high frequency
- 4) Regarding compliance towards IEC 61000-4-3 (EN 61000-6-2 (2005)): variation of the offset between 80 MHz and 1 GHz with a field intensity of 10 [V/m].

Features

- Hall effect measuring principle
- Panel mounting-Horizontal or Vertical
- Insulating plastic case recognized according to UL 94-V0.

Special feature

• 4 core screened cable 2 m long.

Advantages

- Very good linearity
- Very good accuracy
- · Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- · Current overload capability
- Low power consumption.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

N°52.63.60.502.4

Current Transducer HTA 1000-S/SP9

Insulation characteristics			
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	4.0	kV
U_{Ni}	Impulse withstand voltage 1.2/50 µs	> 7.3	kV
		Min	
d_{CD}	Creepage distance	7.2	mm
$d_{ extsf{Cp}} \ d_{ extsf{Cl}}$	Clearance	7.2	mm
CTI	Comparative Tracking Index (group IIIa)	600	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category III
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$d_{\mathrm{Cp}},d_{\mathrm{CI}},U_{\mathrm{Ni}}$	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	300 V

Safety

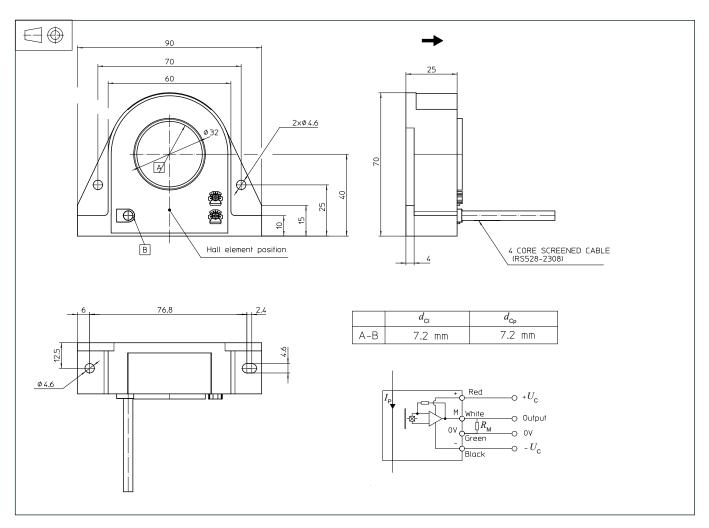
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions HTA 1000-S/SP9 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

•	General	tolera	nce	

Primary through-hole

Connection of secondary

Transducer fastening

Vertical position

Recommended fastening torque

Transducer fasterning

Horizontal position

Recommended fastening torque

±0.5 mm

Ø 32 mm

via 4 core screened Halogan free cable

2 +0.1/₋₀ m in length

1 hole

and 1 notche

Ø 4.6 mm

2 steel screws M4

0.75 N·m (±10 %)

2 holes Ø 4.6 mm

2 steel screws M4

0.75 N·m (±10 %)

Remarks

- $\bullet \ \ U_{\rm out}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.