

# Current Transducer HTC 250 ... 4000-S/SP4

For the electronic measurement of currents: DC, AC, pulsed...,with galvanic separation between the primary circuit and the secondary circuit.



| Electrical data                                                                                             |                                                   |           |                |  |  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|----------------|--|--|--|
| Primary nominal DC current (continuous) $I_{PNDC}$ (A)                                                      | Primary current measuring range $I_{\rm PM}$ (A)  | Туре      |                |  |  |  |
| 250                                                                                                         | ±275                                              | HTC 250-S | S/SP4          |  |  |  |
| 300                                                                                                         | ±330                                              | HTC 300-S | S/SP4          |  |  |  |
| 500                                                                                                         | ±550                                              | HTC 500-S | S/SP4          |  |  |  |
| 1000                                                                                                        | ±1100                                             | HTC 1000- | HTC 1000-S/SP4 |  |  |  |
| 1500                                                                                                        | ±1650                                             | HTC 1500- | HTC 1500-S/SP4 |  |  |  |
| 2000                                                                                                        | ±2200                                             | HTC 2000- | S/SP4          |  |  |  |
| 2500                                                                                                        | ±2750                                             | HTC 2500- | S/SP4          |  |  |  |
| 3000                                                                                                        | ±3300                                             | HTC 3000- |                |  |  |  |
| 4000                                                                                                        | ±4400                                             | HTC 4000- | S/SP4          |  |  |  |
| $U_{\rm C}$ Supply voltage (±3 %)                                                                           |                                                   | ±15       | V              |  |  |  |
| $I_{\rm C}$ Current consumption                                                                             |                                                   | < ±20     | mA             |  |  |  |
| $R_{\rm INS}$ Insulation resistance @                                                                       | R <sub>INS</sub> Insulation resistance @ 500 V DC |           | $M\Omega$      |  |  |  |
| $U_{\rm out}$ Output voltage (analog) @ ± $I_{\rm PNDC}$ ; $R_{\rm L}$ = 2 k $\Omega$ ; $T_{\rm A}$ = 25 °C |                                                   | 5°C ±10   | V              |  |  |  |
| R <sub>out</sub> Output internal resistar                                                                   | nce                                               | < 100     | Ω              |  |  |  |
| $R_{\rm L}$ Load resistance                                                                                 |                                                   | ≥ 2       | kΩ             |  |  |  |
| Acquiracy Dynamic performance data                                                                          |                                                   |           |                |  |  |  |

| Accuracy - Dynamic performance data |                                                                           |         |                          |  |
|-------------------------------------|---------------------------------------------------------------------------|---------|--------------------------|--|
| ε                                   | Error @ $I_{PNDC}$ , $T_A = 25 °C$                                        | < ±1    | % of $I_{\mathtt{PNDC}}$ |  |
| $\varepsilon_{\rm L}$               | Linearity error $(0 \dots \pm I_{PNDC})$                                  | < ±1    | % of $I_{\rm PNDC}$      |  |
| $U_{\rm OE}$                        | Electrical offset voltage @ $T_A$ = 25 °C                                 | < ±30   | mV                       |  |
| $U_{\rm OM}$                        | Magnetic offset voltage @ $U_{\rm PN}$ = 0 refered to primary             |         |                          |  |
|                                     | after an excursion of 1 × $U_{\mbox{\scriptsize PNDC}}$                   | < ±50   | mV                       |  |
| $TCU_{\text{OE}}$                   | Temperature coefficient of $U_{\rm OE}$                                   | < ±1.0  | mV/K                     |  |
| $TCU_{\mathrm{out}}$                | Temperature coefficient of $U_{\mathrm{out}}$                             | < ±0.1  | %/K                      |  |
| t <sub>D 90</sub>                   | Delay time to 90 % of the final output value for $I_{\mathrm{PNDC}}$ step | o¹)≤ 10 | μs                       |  |
| BW                                  | Frequency bandwidth (- 3 dB)                                              | DC 10   | kHz                      |  |

| G         | eneral data                   |                 |    |
|-----------|-------------------------------|-----------------|----|
| $T_{A}$   | Ambient operating temperature | <b>−</b> 40 +85 | °C |
| $T_{Ast}$ | Ambient storage temperature   | <b>−</b> 40 +85 | °C |
| m         | Mass                          | 450             | g  |
|           | Standard <sup>2)</sup>        | EN 50155: 2007  |    |

Notes: 1) For a  $di/dt = 100 \text{ A/}\mu\text{s}$ .





#### **Features**

- Open loop current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

### **Special feature**

PbF RoHS

#### **Advantages**

- Easy installation
- Compact
- High immunity to external interference
- Low power consumption.

#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

# **Application Domain**

Railway (fixed installations and onboard).

 $<sup>^{\</sup>rm 2)}$  Deviation of the offset during the test IEC 61000-4-3 @ 20 V/m in the ranges (80-250) MHz and (500-100) MHz.



## Current Transducer HTC 250 ... 4000-S/SP4

| Insulation coordination |                                                  |            |    |
|-------------------------|--------------------------------------------------|------------|----|
| $U_{\rm d}$             | RMS voltage for AC insulation test, 50 Hz, 1 min | 2.5<br>Min | kV |
| $d_{Cp}$                | Creepage distance                                | > 15.1     | mm |
| $d_{CI}$                | Clearance                                        | > 15.1     | mm |
| CTI                     | Comparative tracking index (group IIIa)          | 275        |    |

# **Safety**

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

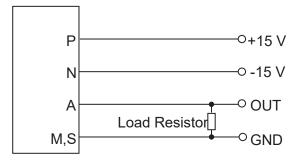


This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

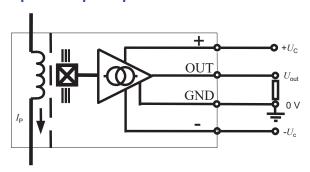


Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.




# Dimensions HTC 250 ... 4000-S/SP4 (in mm)



### **Connection circuit**



# **Operation principle**



### **Mechanical characteristics**

- General tolerance ±1 mm
- Transducer fastening
  Recommended fastening torque 2.6 ±0.52 N·m

#### **Remarks**

- $I_{\rm S}$  is positive when  $I_{\rm P}$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/.