

Electrical data

Current Transducer LA 25-NP/SP14

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit

Primary nominal RMS c	urrent	0.25		Α		
Primary current, measur	ring range	0 ±0	0.36	Α		
Measuring resistance with ±15 V	@ ±0.25 A _{max} @ ±0.36 A _{max}	$R_{ m M\ min}$ 100	R _{M max} 320 190	Ω		
Secondary nominal RM	S current	25		mA		
Turns ratio		100 : 1	1000			
Supply voltage (±5 %)		±15		V		
Current consumption		10 + <i>I</i> ₅	s	mA		
	Primary current, measured Measuring resistance with ±15 V Secondary nominal RM Turns ratio Supply voltage (±5 %)	with ± 15 V @ ± 0.25 A $_{max}$ @ ± 0.36 A $_{max}$ Secondary nominal RMS current Turns ratio Supply voltage (± 5 %)	Primary current, measuring range $0 \dots \pm 0$ Measuring resistance $R_{\text{M min}}$ with $\pm 15 \text{ V}$ @ $\pm 0.25 \text{ A}_{\text{max}}$ 100 $0 \pm 0.36 \text{ A}_{\text{max}}$ 100 Secondary nominal RMS current 25 Turns ratio 100: $0 \pm 0.25 \text{ A}_{\text{max}}$ 100 $0 \pm 0.36 \text{ A}_{\text{max}}$ 100 $0 \pm$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Accuracy - Dynamic performance data				
$\varepsilon_{\mathrm{tot}}$	Total error @ I_{PN} , T_A = 25 °C	±0.5		%
$\varepsilon_{_{\mathrm{I}}}$	Linearity error	< 0.2		%
-		Тур	Max	
I_{O}	Offset current ¹⁾ @ I_P = 0, T_A = 25 °C	±0.05	±0.15	mA
I_{OM}	Magnetic offset current $^{2)}$ @ $I_{\rm P}$ = 0 and specified $R_{\rm M}$,			
	after an overload of 3 × I_{PN}	±0.05	±0.15	mA
I_{OT}	Temperature variation of $I_{\rm O}$ = -10 °C +70 °C	±0.10	±0.35	mA
t _{D 90}	Delay time to 90 % of the final output value for $I_{\rm PN}$ st	ep ³⁾ < 1	İ	μs
BW	Frequency bandwidth (-1 dB)	DC	150	kHz

Certer data			
T_{A}	Ambient operating temperature	-10 + 70	°C
T_{Ast}	Ambient storage temperature	−25 +85	°C
R_{P}	Resistance of primary (winding) @ T_A = 25 °C	< 860	$m\Omega$
R_{s}	Resistance of secondary winding @ T_A = 70 °C Insertion inductance	110 496	Ω μH
L_{P}			•
R_{INS}	Insulation resistance @ 500 V, T_A = 25 °C	> 1500	$M\Omega$
m	Mass	22	g
	Standards	EN 50178: 19	997

Notes: 1) Measurement carried out after 15 mn functioning

$I_{PN} = 0.25 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $I_{PN} = 0.25 \,\text{A}$
- $I_{PM} = 0 \dots \pm 0.36 \text{ A}$
- $N_p/N_s = 100 : 1000$
- $T_A = -10 \, ^{\circ}\text{C} \dots +70 \, ^{\circ}\text{C}$.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application Domain

Industrial.

General data

²⁾ The result of the coercive field of the magnetic circuit

³⁾ For a $di/dt = 50 \text{ A/}\mu\text{s}$.

Current Transducer LA 25-NP/SP14

Ins	sulation coordination		
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	2.5	kV
U_{Ni}	Impulse withstand voltage 1.2/50 µs	16	kV
		Min	
$d_{\rm Cp}$	Creepage distance	19.5	mm
d_{CI}	Clearance	19.5	mm
CTI	Comparative tracking index (group IIIa)	175	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$d_{\mathrm{Cp}},d_{\mathrm{CI}},U_{\mathrm{Ni}}$	Rated insulation voltage	Nominal voltage
Basic insulation	1700 V	1700 V
Reinforced insulation	600 V	600 V

Safety

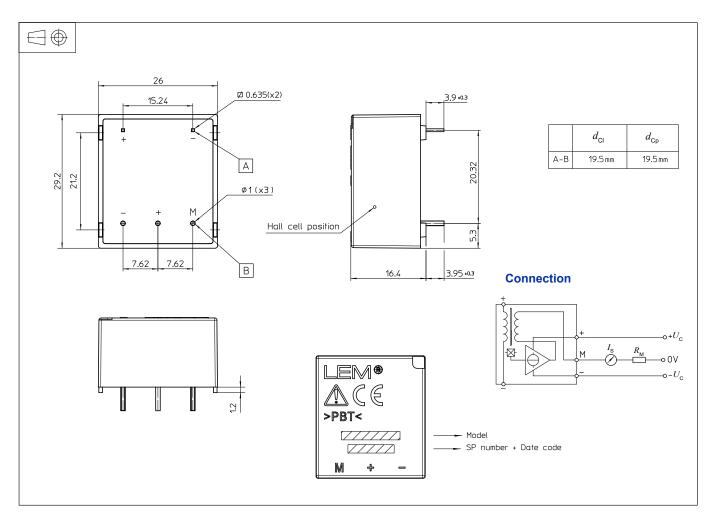
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 25-NP/SP14 (in mm)

Mechanical characteristics

General tolerance

Fastening & connection of primary

Fastening & connection of secondary

• Recommended PCB hole

±0.2 mm

2 pins

0.635 × 0.635 mm

3 pins Ø 1 mm

1.2 mm

Remark

 $\bullet \ \ I_{\rm S}$ is positive when $I_{\rm P}$ flows from terminal + to terminal -.