

Current Transducer LF 2005-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit.

Electrical data

I _{PN}	Primary nominal current rms		2000		Α
I _{PM}	Primary current, measuring range @ ± 24 V		0 ± 3	3500	Α
Î	Overload capability @ 10 ms		20		kA
$\dot{\mathbf{R}}_{\mathrm{M}}$	Measuring resistance		$\mathbf{R}_{\mathrm{M}\mathrm{min}}$	$\mathbf{R}_{\mathrm{M \ max}}$	
	with ± 15 V (± 5 %)	@ $\pm 2000 A_{max}$	0	7.5	Ω
		@ ± 2500 A _{max}	0	8.0	Ω
	with ± 24 V (0/+20%)	@ ± 3500 A _{max}	3	6	Ω
	with ± 28.8 V (0 %)		3	19	Ω
I_{SN}	Secondary nominal current	rms	400		mΑ
\mathbf{K}_{N}	Conversion ratio		1:500	00	
V _C	Supply voltage 1)		± 15	24	V
I _C	Current consumption		33 (@	± 24 V) + I _S	mΑ

Accuracy - Dynamic performance data

Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity error		± 0.3 < 0.1		% %
		Тур	Max	
Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.5	mA
Magnetic offset current @ I _P = 0 a	nd specified $\mathbf{R}_{_{\mathrm{M}}}$,			
after an o	overload of 3 x I _{PN}		± 0.2	mΑ
Temperature variation of \mathbf{I}_{\odot}	- 25°C + 85°C	± 0.2	± 0.5	mΑ
	- 40°C 25°C		± 1.5	mΑ
Response time 2) to 90 % of I _{PN} ste	ер	< 1		μs
di/dt accurately followed		> 100		A/µs
Frequency bandwidth (- 1 dB)		DC	150	kHz
	Linearity error Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Magnetic offset current @ $\mathbf{I}_{\rm p} = 0$ a after an often and the second of $\mathbf{I}_{\rm o}$ Response time $^{2)}$ to 90 % of $\mathbf{I}_{\rm PN}$ steel di/dt accurately followed	Linearity error	Linearity error < 0.1 Consider the content of the	Linearity error < 0.1 Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}\mathrm{C}$ Magnetic offset current @ $\mathbf{I}_{\rm p} = 0$ and specified $\mathbf{R}_{\rm M}$, after an overload of $3 \times \mathbf{I}_{\rm PN}$ Temperature variation of $\mathbf{I}_{\rm O}$ $-25^{\circ}\mathrm{C} \dots + 85^{\circ}\mathrm{C}$ $-40^{\circ}\mathrm{C} \dots - 25^{\circ}\mathrm{C}$ Response time $^{2)}$ to 90 % of $\mathbf{I}_{\rm PN}$ step di/dt accurately followed < 0.1 Typ Max ± 0.5 ± 0.5 ± 1.5

General data

T_{A}	Ambient operating temperature	- 40 + 85	°C
T_s	Ambient storage temperature	- 50 + 85	°C
$\mathbf{R}_{\mathrm{s}}^{\mathrm{c}}$	Secondary coil resistance @ T _A = 85°C	26	Ω
m	Mass	1.5	kg
	Standard	EN 50155: 2001	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $V_{\rm C} = \pm 15 ... 24 \text{ V}^{-1}$
- **V**_d = 10 kV
- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Internal shield connected to "- V_c"
- Connection to secondary circuit on LEMO EEJ.1B.304.CYC.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phase inverters
- · Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

• Traction.

Notes: 1) ± 15 V (- 5 %) .. ± 24 V (+ 20 %)

2) With a di/dt of 100 A/µs.

Current Transducer LF 2005-S/SP1

Isolation characteristics			
V _d	Rms voltage for AC insulation test, 50 Hz, 1 min	10	kV
V _e	Partial discharge extinction voltage rms @ 10 pC	≥ 4.8 ¹) Min	kV
dCp	Creepage distance	43.2	mm
dCI	Clearance	42.2	mm
CTI	Comparative Tracking Index (group I)	600	

Note: 1) Test carried out with a non-insulated busbar, dimensions 290 x 50 x 10 mm, centered in the through hole.

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 2005-S/SP1 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Vertical or flat position

Recommended fastening torque

Primary through-hole

Or

Connection of secondary

Connection to the ground

Recommended fastening torque

± 1 mm

4 holes Ø 6.5 mm

4 M6 steel screws

5.5 Nm

9 Nm

60.5 x 20.5 mm Ø max 56 mm

LEMO EEJ.1B.304.CYC

hole Ø 8.5 mm

M8 steel screw

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.