Technical Information

Current Control in TeleCom Applications with Split Core Transducers
Traditionally, current sensors are designed and developed with one core and an aperture to accommodate the primary current carrying conductor. Typically, you must remove the primary busbar or cable to mount the transducer, and place the primary conductor through the aperture.

A new design for sensors through the HOP & HTR current transducers series has been introduced by LEM. These devices were designed to meet current measurement requirements in Telecom Power Supply applications.

The main characteristic feature of the series is a split core design, which allows for ease of installation around existing busbars or cables, without removal of the busbar or cable. These series are based on the Open Loop Hall effect technology principle (Fig.1), which meets current measurement requirements from 50 A\textsubscript{RMS} up to 2000 A\textsubscript{RMS}. Key characteristics include: high performance, compact size (see cover page), high EMC immunity, isolation, ±4 V instantaneous voltage output, and a power supply of ±12 or ±15 Vo.

HOP & HTR series, main features and advantages

Simple and quick to install in retrofit applications, LEM's new split core series also provide installation flexibility in systems where power shut-off to install the transducer is not feasible.

Fastening the HOP models requires removal and reinstallation of two screws or two clips, depending on the model.

HTR series is secured to the primary conductor by a locking clip molded into the hinged split core housing. Supplementary screw-hole fastening is incorporated into the housing.

There are two different aperture types available, rectangular window or circular window, suitable for a variety of busbar or cable diameters.

All transducers have the following main electrical parameters:

- Accurate current measurement for AC, DC, pulse and complex waveforms, with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).
- Power Supply: ±12 .. ±15V.
- Typical accuracy (without initial offset): ±2% of I\textsubscript{PN} (*).
- Wide operating temperature range.
- High overload capability allowing secondary equipment protection.

HOP-SB series: For mounting on primary busbars

Transducers with Instantaneous Voltage output.

Main Characteristics

Rectangular busbar mounting.

Fasten HOP models in one of two ways, either:
1. Directly to the primary busbar without bolting to a panel, or
2. To the primary busbar or cable bolted to a panel or frame.

Three different package designs (Fig. 2) accommodate various primary busbar or cable configurations to measure nominal currents from 200 A\textsubscript{RMS} to 2000 A\textsubscript{RMS}:

1. **Package 1**:
 - Aperture with a rectangular window : 41 x 12.5 mm

2. **Package 2**:
 - Aperture with a rectangular window : 104 x 40 mm

3. **Package 3**:
 - Aperture with a rectangular window : 163 x 50 mm

This characteristic is valid only for a primary conductor filling completely the transducers aperture.
For primary busbar mounting
Transducers with Instantaneous Voltage output

Main Characteristics (cont.)

Instantaneous ±4 V output.

Bipolar voltage supply ±12 up to ±15 V (±5%).

With Open Loop Hall effect technology, a typical accuracy at IPN at +25 °C, at ±15 V, of ± 2 % (**) is possible (without initial electrical and magnetic offset), because LEM utilizes two Hall chips per sensor (Fig. 3 & 4).

Linearity error is similar to a standard Open Loop transducer, between 0,5 and 1 % of IPN.

Frequency bandwidth (-1dB): DC from 4 to 10 kHz according to the model used (small signal to avoid excessive core heating at high frequencies).

![Graph 1](image1.png)

Fig. 3: HOP 2000-SB Accuracy in AC applications (initial offset cancelled) (Transducer calibration (gain and offset adjustment) done at 2000 A).

![Graph 2](image2.png)

Fig. 4: HOP 2000-SB Accuracy in DC applications (initial offset cancelled) (Transducer calibration (gain and offset adjustment) done at 2000 A).

For primary cable mounting
Transducers with Instantaneous Voltage output

HOP-SB series (cont.)

<table>
<thead>
<tr>
<th>IPN (A RMS)</th>
<th>IP (± A)</th>
<th>Vc (± V)</th>
<th>V_OUT (± V)</th>
<th>Package no.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>300</td>
<td>12 ... 15</td>
<td>4</td>
<td>1</td>
<td>HOP 200-SB</td>
</tr>
<tr>
<td>300</td>
<td>450</td>
<td>12 ... 15</td>
<td>4</td>
<td>1</td>
<td>HOP 300-SB</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
<td>12 ... 15</td>
<td>4</td>
<td>1</td>
<td>HOP 400-SB</td>
</tr>
<tr>
<td>500</td>
<td>750</td>
<td>12 ... 15</td>
<td>4</td>
<td>1</td>
<td>HOP 500-SB</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HOP 500-SB/SP1</td>
</tr>
<tr>
<td>600</td>
<td>900</td>
<td>12 ... 15</td>
<td>4</td>
<td>1</td>
<td>HOP 600-SB</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HOP 800-SB</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HOP 1000-SB</td>
</tr>
<tr>
<td>1500</td>
<td>3000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HOP 1500-SB</td>
</tr>
<tr>
<td>2000</td>
<td>3000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HOP 2000-SB</td>
</tr>
<tr>
<td>2000</td>
<td>3000</td>
<td>12 ... 15</td>
<td>4</td>
<td>3</td>
<td>HOP 2000-SB/SP1</td>
</tr>
</tbody>
</table>

HTR-SB series

<table>
<thead>
<tr>
<th>IPN (A RMS)</th>
<th>IP (± A)</th>
<th>Vc (± V)</th>
<th>V_OUT (± V)</th>
<th>Package no.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
<td>12 ... 15</td>
<td>4</td>
<td>4</td>
<td>HTR 50-SB</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>12 ... 15</td>
<td>4</td>
<td>4</td>
<td>HTR 100-SB</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>12 ... 15</td>
<td>4</td>
<td>4</td>
<td>HTR 200-SB</td>
</tr>
<tr>
<td>300</td>
<td>600</td>
<td>12 ... 15</td>
<td>4</td>
<td>4</td>
<td>HTR 300-SB</td>
</tr>
<tr>
<td>400</td>
<td>800</td>
<td>12 ... 15</td>
<td>4</td>
<td>4</td>
<td>HTR 400-SB</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>12 ... 15</td>
<td>4</td>
<td>4</td>
<td>HTR 500-SB</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HTR 500-SB/SP1</td>
</tr>
<tr>
<td>600</td>
<td>900</td>
<td>12 ... 15</td>
<td>4</td>
<td>1</td>
<td>HTR 600-SB</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HTR 800-SB</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HTR 1000-SB</td>
</tr>
<tr>
<td>1500</td>
<td>3000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HTR 1500-SB</td>
</tr>
<tr>
<td>2000</td>
<td>3000</td>
<td>12 ... 15</td>
<td>4</td>
<td>2</td>
<td>HTR 2000-SB</td>
</tr>
<tr>
<td>2000</td>
<td>3000</td>
<td>12 ... 15</td>
<td>4</td>
<td>3</td>
<td>HTR 2000-SB/SP1</td>
</tr>
</tbody>
</table>

Main Characteristics

Split core transducers for cable mounting.

One mechanical design (Fig. 5) to measure nominal current from 50 A to 500 A for primary cable mounting:

1. **Package 4**: HTR
 Circular aperture, 21 mm diameter.

![Graph 3](image3.png)

Fig. 5: HTR models.

Instantaneous voltage output:

± 4 V (HTR models).

Bipolar voltage supply:

±12 V ... ±15 V (±5 %) for the HTR models.

This characteristic is valid only for a primary conductor filling completely the transducers aperture.
HTR-SB series (Cont.)

With Open Loop Hall effect technology, typical accuracy at I_{PN}, at +25 °C, at ±15 V, of ±2 % (*) is possible (without initial electrical and magnetic offset) with the HTR models.

Linearity error is similar to a standard Open Loop transducer, between 0.5 % and 1 % of I_{PN} (Fig. 6).

Frequency bandwidth:
- For the HTR series: DC to 10 kHz (-1 dB)**

** Small signal to avoid excessive core heating at high frequencies.

Fig. 6: HTR 500-SB linearity error curve, initial offset integrated. Max linearity error < 0.2 %.

Current Control in TeleCom Applications

TELECOM networks handle call volume in the following ways:

1. For local calls, the connection is established and managed by “Local Switches.” There are usually several Local Switches in each city.

2. When a long distance call is required, the local switch connects to a “High Volume Switch.” This switch handles the call through another High Volume Switch down to the Local Switch of the called party. There are usually one or two high Volume Switches in each city.

3. For international calls, the call goes through the Local Switch, then a High Volume Switch and finally through an International High Volume Switch that connects to the foreign country. Once in the foreign country, the call is handled to the receiving party through a High Volume Switch and a Local Switch.

4. The mobile telephone network is organised in “cells.” Each cell is connected to its neighboring cell, which contains a set of transmitters, receivers and relay stations (antennas).

Often some cells or substations, such as transmitters/receivers of mobile phones, are located in remote areas. (Antenna).

To keep these units in good working order, manufacturers use devices (Energy Management System), which monitor the network power supply and auxiliary batteries, which activate an alarm in case of a problem. In these devices, LEM transducers are used for the current measurement. (Fig. 8).

Fig. 8: HOP current transducer in a Chinese TeleCom application.

This method is also used for the power supply and backup battery monitoring of the switches.

All switches used on the public network are powered from the main transmission source, and have a backup power source, which is usually 24 V or 48 V DC (sometimes 78 to 96 V DC).

* This characteristic is valid only for a primary conductor filling completely the transducer’s aperture.

** Small signal to avoid excessive core heating at high frequencies.
1. AC to DC converters in switch and relay stations, require current measurement. This is a typical Telecom power supply application, where the current transducer controls the output current.

Two methods can be employed to generate the DC bus:

1.1 Several SMPS (Switch Mode Power Supply) connected in parallel measure lower currents from 30A to 60A. This current measurement is for control and for power sharing between the SMPS...
(Fig. 9, single (1~) or three (3~) phase supply)

1.2 ...or in a Rectifier, where higher currents from 200A to 1000A are measured.
(Fig. 10, left side of a large three phase rectifier)

2. Battery banks are installed to backup the switches. The battery bank currents for charge and discharge range from 200A to 1000A, and are typically monitored using resistive shunts. The trend is to replace these shunts with current transducers, due to the insertion losses of resistive shunts. Ideally, split core transducers can be used for ease and speed of installation. This is a Battery Monitoring application (Fig. 10)

3. LEM split core current transducers are also used to measure output current in TeleCom Power Distribution applications, where current levels from 30A to 100A are present. (Fig. 10, right side).

LEM offers a Five-Year Warranty on all our current and voltage transducers

All LEM transducers are CE marked, which guarantees the product is in compliance with the European EMC directive 89/336/EEC.

EN50178 is the reference standard used at LEM to guarantee overall performance of our current and voltage transducers in industrial, electrical, mechanical and environmental parameters.
5 Years Warranty on LEM Transducers

LEM designs and manufactures high quality and high reliability products for its customers over the entire world.

Since 1972, we have delivered several million current and voltage transducers which are, for most of them, still in operation on traction vehicles, industrial motor drives, UPS systems and many other applications requiring high quality standards.

Our 5 years warranty applies on all LEM transducers delivered from the 1st. of January 1996 and is valid in addition to the legal warranty. The warranty granted on our Transducers is for a period of 5 years (60 months) from the date of their delivery.

During this period we shall replace or repair at our cost all defective parts (provided the defect is due to defective material or workmanship).

Further claims as well as claims for the compensation of damages, which do not occur on the delivered material itself, are not covered by this warranty.

All defects must be notified to us immediately and faulty material must be returned to the factory along with a description of the defect.

Warranty repairs and or replacements are carried out at our discretion. The customer bears the transport costs. An extension of the warranty period following repairs undertaken under warranty cannot be granted.

The warranty will be invalidated if the buyer has modified or repaired, or has had repaired by a third party the material without LEM’s written consent.

The warranty does not cover any damage caused by incorrect conditions of use and cases of force majeure. No responsibility will apply except legal requirements regarding product liability.

The warranty explicitly excludes all claims exceeding the above conditions.

LEM, Geneva, January 1. 2001
Business Area Components

[Signature]

Paul Van Iseghem
President of LEM Components