

Integrated Current Sensor GXS Series (Version A) Industrial Only

$I_{\rm PM}$ From 5 to 60 A

Version A – Industrial Grade Only Description

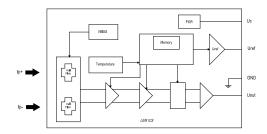
The GXS Series is a LEM integrated current transducer solution designed to measure AC and DC current in industrial applications. The sensor can reject an external field coming from a noisy environment. Innovative isolation technology and signal conditioning design can meet high isolation levels while sensing the current flowing through the primary conductor. The primary conductor (pins 1 and 4) has a very low electrical resistance of 1.2 m Ω (typical), which enables excellent performance at low power losses. The GXS is capable of measuring currents from 5 to 60A over a wide temperature range. The galvanic isolation between the primary and secondary eliminates the need for any additional insulation, reducing the total footprint and the cost of the system.

Note on Version Q - Automotive Grade

The Version Q of the GXS Series will be dedicated to automotive applications, with AEC-Q100 qualification and specifications tailored to meet automotive sector requirements.

Features & Advantages

- Open loop multi-range current sensor: 5~60 A
- Low electrical resistance 1.2 mΩ
- Supply voltage :5 V or 3.3 V
- Ratiometric output & Fixed output
- High bandwidth: 400 kHz
- 1.5us response time
- Galvanic separation between primary and secondary with 4mm of dCl of and 4mm of dCp.
- Withstand isolation voltage (VISO): 3000Vrms
- Working Voltage for Basic Isolation: 600Vdc/424Vrms
- CMTI > 100V/ns
- CTI(I)
- Working Temperature: -40°C ... 125°C
- UL62368/EN62368 safety certification
- SOIC8 Package
- ROHS
- Maximum surge isolation withstands voltage (VIOSM): 6 kV.


Product MOQ

GXS-XXX: 2500pcs/Reel.

c**FU**us & RØHS

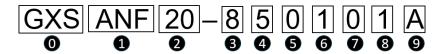
Typical Applications

- Photovoltaic System
- Servo and Drive
- Automation
- Industrial power supply
- Motor control
- DCDC
- OBC/DC-DC/PTC Heater
- Charging pile
- Power distribution.

Main Order Information (Recommended the following device)

Part number	Full Scale Primary Current(A)	Nominal current(A)	Power Supply(V)	Sensitivity (mV/A)	Package
GXS ANF 5-2 30001A	5	2	3.3	264	
GXS ANF 5-2 50101A	5	2	5	400	
GXS ANF 10-4 51101A	10	4	5	400	
GXS ANF 10-4 50101A	10	4	5	200	
GXS ANF 10-4 30101A	10	4	3.3	132	
GXS ANF 10-4 30001A	10	4	3.3	132	
GXS ANF 10-4 31101A	10	4	3.3	264	
GXS ANF 10-4 50001A	10	4	5	200	
GXS ANF 20-8 50101A	20	8	5	100	
GXS ANF 20-8 51101A	20	8	5	200	
GXS ANF 20-8 50001A	20	8	5	100	
GXS ANF 20-8 30101A	20	8	3.3	66	
GXS ANF 20-8 30001A	20	8	3.3	66	0010 01
GXS ANF 25-10 50001A	25	10	5	80	SOIC 8L
GXS ANF 25-10 50101A	25	10	5	80	
GXS ANF 30-12 30101A	30	12	3.3	44	
GXS ANF 30-12 50101A	30	12	5	66.67	
GXS ANF 30-12 50001A	30	12	5	66.67	
GXS ANF 30-12 51101A	30	12	5	133.3	
GXS ANF 30-12 30001A	30	12	3.3	44	
GXS ANF 40-16 30101A	40	16	3.3	33	
GXS ANF 40-16 50101A	40	16	5	50	
GXS ANF 50-20 50001A	50	20	5	40	
GXS ANF 50-20 50101A	50	20	5	40	
GXS ANF 50-20 51001A	50	20	5	80	
GXS ANF 50-20 30101A	50	20	3.3	26.4	

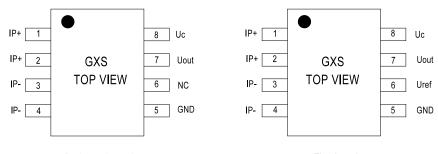
For more information about LEM stock and lead time please contact us.


 $https://www.lem.com/en/form/contact-us?utm_source=lem\&utm_medium=datasheet\&utm_campaign=ds_\dots$

Released product name#	Current measurement range (A max)	Nominal current (A RMS) 1)	Supply voltage $U_{\mathtt{c}}$	Ratiometricity	Temperature range
GXS ANF 50-20 50001A	50	20	5	N	
GXS ANF 25-10 50001A	25	10	5	N	
GXS ANF 20-8 51101A	20	8	5	Υ	−40 °C 125 °C
GXS ANF 20-8 50101A	20	8	5	Υ	
GXS ANF 10-4 50101A	10	4	5	Y	

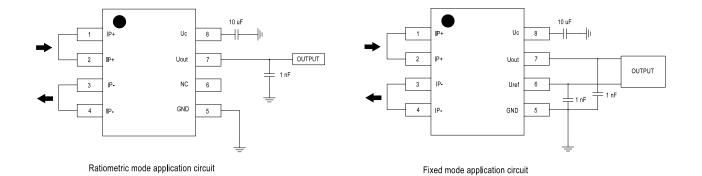
Product Naming Rules:

- Integrated Current Sensor
- 2 Full Scale Current (A)


ASIC Version

- 3 Nominal Current (A)
- Supply Voltage: 5 - VCC = 5 V; 3 - VCC = 3.3 V

- Output Directionality:
- 0 Bipolar output ; 1 Unipolar output
- Output mode: 0 – Fixed mode output; 1 – Ratiometric mode output
- 7 Trimming code
- Operating Temperature Range: 0:-40~150 °C; 1:-40~125 °C
- 9 Product Grade: A for Industrial, Q for Automotive


Pin Configuration and Functions

Fixed mode Ratiometric mode

Pin#	Name	Function
1-2	I_{P} +	Input of the primary current
3-4	I_{P}^-	Output of the primary current
5	GND	Ground
6	U _{ref} / NC	R version: Not connected (this Pin can also connect to GND) F version: Reference Voltage
7	$U_{ m out}$	Output voltage
8	U_{C}	Supply voltage

Application circuit

Page 4/19

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Maximum supply voltage @ 5 V, 25 °C	$U_{\rm C\; max}$	V	6.5
Maximum junction temperature 1)	$T_{ m Jmax}$	°C	150
Electrostatic discharge voltage (HBM - Human Body Model)	$U_{\rm ESD\; HBM}$	kV	8
Electrostatic discharge voltage (CDM - Charged Device Model)	$U_{\rm ESD\;CDM}$	kV	2
Maximum source / sink current		mA	±25

Note: Absolute maximum ratings apply at 25 °C unless otherwise noted.

Stresses above these ratings may cause permanent damage.

Exposure to absolute maximum ratings for extended periods may degrade reliability.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T_{A}	°C	-40		125	
Ambient storage temperature	T_{Ast}	°C	-40		150	
Resistance of the primary @ T_A = 25 °C	R_{P}	mΩ		1.2		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RMS voltage for AC insulation test, 50 Hz, 1 min	$U_{\rm ISO}$	V _{rms}	3000	According to IEC 62368-1 OSAT tested at 3.6kV for 1 second
Impulse withstand voltage 1.2/50 μs	$U_{\rm Surge}$	kV	6	According to IEC 61000-4-5
Surge current	$I_{\rm Surge}$	kA	4	According to IEC 61000-4-5
Clearance	$d_{\scriptscriptstyle CI}$	mm	4	Shortest distance through air
Creepage	$d_{\scriptscriptstyle CP}$	mm	4	Shortest path along device body
Comparative tracking index	CTI	V/ns	>=600	CTII
Common-mode transient immunity	CMTI	V/ns	>100	The criterion for judging the failure is that the output peak is greater than 100mV and the duration is longer than 1us
Working voltage for basic isolation	V	V _{rms}	424	Basic insulation according to IEC 62368-1
	$V_{ m WVBI}$	V _{dc}	600	Basic insulation according to IEC 62368-1

Note: 1) Done on LEM evaluation board PCB.

GXS Common Characteries ($T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V or 3.3 V, unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
		.,	3	3.3	3.6	$U_{\rm c}$ = 3.3 V
DC supply voltage	U_{c}	V	4.5	5	5.5	U _C = 5 V
			/	12	15	No load, $U_{\rm C}$ = 5 V, 'R' version
DC current consumption	I_{C}	mA	/	7.5	8	No load, $U_{\rm C}$ = 3.3 V, 'R' version
			2.49	2.5	2.51	$U_{\rm C}$ = 5 V, Bipolar&Fixed version, $T_{\rm A}$ = 25 °C
			1.64	1.65	1.66	$U_{\rm C}$ = 3.3 V, Bipolar&Fixed version, $T_{\rm A}$ = 25 °C
Internal reference voltage @ $I_{\rm p}$ = 0 A	U_{ref}	V	0.49	0.5	0.51	$U_{\rm C}$ = 5 V, Unipolar&Fixed version, $T_{\rm A}$ = 25 °C
			0.32	0.33	0.34	$U_{\rm C}$ = 3.3 V, Unipolar&Fixed version, $T_{\rm A}$ = 25 °C
Ratiometric output zero current output	U_{oq}	V	/	<i>U</i> _c /2	/	Bipolar Ratiometric Version
voltage)	OQ	V	/	0.1 * U _C	/	Unipolar Ratiometric Version
Internal filter resistance 1)	$R_{ m filter}$	kΩ	/	4.7	/	
Power on time	T_{PO}	ms		1	/	Recommend customer to read output after 1ms power-on time, before 1ms internal OTP is loading, $T_{\rm A}$ = 25 °C
Output current		mA		1		
Output capacitance load output 1)	C_{L}	nF			10	
Output resistance load 1)	R_{L}	kΩ	10			
Internal output series resistance		Ω		5		
Output short current	I_{short}	mA		25		Short to $U_{\rm C}$ and short to GND, $T_{\rm A}$ = 25 °C
Output voltage range @ $I_{\rm PM}$	$U_{\rm S}$	V	0.1		<i>U</i> _c – 0.1	$T_{\rm A}$ = 25 °C, $C_{\rm L}$ = 1 nF, $R_{\rm L}$ = 10 k Ω , to $U_{\rm C}$ or GND
Common mode field rejection 1)	CMFR	dB		>40		
Power supply rejection ratio	PSRR	dB		-50		Only for F version, DC to 1 kHz, 100 mV pk-pk ripple around $U_{\rm C}$ = 5 V, $I_{\rm p}$ = 0 A
Rise time 1)	T_{r}	us		0.9		$T_{\rm A} = 25 {\rm ^{\circ}C}, \ \ C_{\rm L} = 1 {\rm nF}, \ \ U_{\rm C} = 3.3 {\rm V}$
Propagation delay 1)	T_{P}	us		0.9		$T_{\rm A} = 25 {\rm ^{\circ}C}, \ \ C_{\rm L} = 1 {\rm nF}, \ \ U_{\rm C} = 3.3 {\rm V}$
Response time 1)	T_{res}	us		1.5		$T_{\rm A} = 25 {\rm ^{\circ}C}, \ C_{\rm L} = 1 {\rm nF}, \ U_{\rm C} = 3.3 {\rm V}$
Frequency bandwidth (−3 dB)	BW	kHz		400		$T_{\rm A}$ = 25 °C, -3 dB bandwidth, $C_{\rm L}$ = 1 nF, $U_{\rm C}$ = 5 V, 30 A, R version
Non-linearity error 0 ± I _{PM}	E_{INL}	%	/	±0.2	/	Linearity error 0 ± I _{PM}
Noise density	3.7	uArms/		120		$T_{\rm A}$ = 25 °C, $U_{\rm C}$ = 5 V, $C_{\rm L}$ = 1 nF
Noise density	N_{d}	√Hz		140		$T_{\rm A}$ = 25 °C, $U_{\rm C}$ = 3.3 V, $C_{\rm L}$ = 1 nF
Ratiometric output sensitivity error	S_{ERR}	%		0.75		
Ratiometric output offset error	U_{out0R}	%		0.1		'R' version, $U_{\rm C}$ = 4.85 V~ 5.15 V, $T_{\rm A}$ = 25 °C

Electrical data GXS ANF 10-4 51101A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal current	I_{PN}	Α		4		
Primary current, measuring range	I_{PM}	А	-10		10	
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l ref}}$	V		0.1* <i>U</i> _C		I _{PR} = 0 A
Nominal sensitivity	S_{N}	mV/A		400		
Sensitivity error 1)	C	%	-2		2	T _A = 25 °C 125 °C
densitivity end	$\varepsilon_{\rm S}$	/0		±2.5		T _A = −40 °C 25 °C
Sum of sensitivity and linearity error @ T_A = 25 °C	€ _{S L 25}	% of $I_{\rm PN}$	1	2	/	
Cleatrical affect valtage referred to primary	1.7	mV	-15		15	T _A = 25 °C 125 °C
Electrical offset voltage referred to primary	U_{OE}	IIIV		±15		T _A = −40 °C 25 °C
Electrical offset current referred to primary	I_{OE}	mA	-37.5		37.5	
Total output error	E	0/ of I	-2		2	T _A = 25 °C 125 °C
Total output error	$E_{ m total}$	% of I_{PN}		±2.5		T _A = −40 °C 25 °C
Offset lifetime drift	17	mV	-12	1	12	After reliability test,
	$U_{\mathrm{O}\mathrm{E_drif}}$				12	T _A = 25 °C
Sensitivity error lifetime drift	$E_{\rm S_drift}$	%	-2.3		2.3	After reliability test,
	S_drift	,,,				T _A = 25 °C
Total output error over lifetime drift	$E_{ m total_drift}$	%	-2.8		2.8	After reliability test,
	total_drift	/0	2.0			T _A = 25 °C

Electrical data GXS ANF 10-4 50101A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal current	I_{PN}	Α		4		
Primary current, measuring range	I_{PM}	Α	-10		10	
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		U _c /2		I _{PR} = 0 A
Nominal sensitivity	S_{N}	mV/A		200		
Sensitivity error 1)	C	%	-2		2	T _A = 25 °C 125 °C
Considerity choice	$\varepsilon_{\rm s}$	70		±2.5		T _A = −40 °C 25 °C
Sum of sensitivity and linearity error @ T_A = 25 °C	€ _{S L 25}	% of $I_{\rm PN}$	/	2	/	
Electrical offset voltage referred to primary	11	mV -	-15		15	T _A = 25 °C 125 °C
Electrical offset voltage referred to primary	U_{OE}			±15		T _A = −40 °C 25 °C
Electrical offset current referred to primary	Ioe	mA	-75		75	
Total output error	E	0/ -f 1	-2		2	T _A = 25 °C 125 °C
Total output error	$E_{ m total}$	% of I_{PN}		±2.5		T _A = −40 °C 25 °C
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12		12	After reliability test,
	O E_drif				12	T _A = 25 °C
Sensitivity error lifetime drift	$E_{\rm S_drift}$	%	-2.3		2.3	After reliability test,
	S_anft					T _A = 25 °C
Total output error over lifetime drift	$E_{\rm total_drift}$	%	-2.8		2.8	After reliability test,
	total_drift	/0	2.0		2.0	T _A = 25 °C

Electrical data GXS ANF 10-4 50001A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal current	I_{PN}	Α		4		
Primary current, measuring range	I_{PM}	Α	-10		10	
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		2.5		I _{PR} = 0 A
Nominal sensitivity	S_{N}	mV/A		200		
Sensitivity error 1)	C	%	-2		2	T _A = 25 °C 125 °C
Densitivity entities	ε_{S}	/0		±2.5		T _A = -40 °C 25 °C
Sum of sensitivity and linearity error @ $T_{\rm A}$ = 25 °C	€ _{S L 25}	% of I_{PN}	/	2	/	
Electrical offset voltage referred to primary	11	mV	-15		15	T _A = 25 °C 125 °C
Electrical offset voltage referred to primary	U_{OE}	IIIV		±15		T _A = −40 °C 25 °C
Electrical offset current referred to primary	I _{OE}	mA	/		/	
Total output error	E	% of I_{PN}	-2		2	T _A = 25 °C 125 °C
Total output error	$E_{ m total}$	76 OI I _{P N}		±2.5		T _A = −40 °C 25 °C
Offset lifetime drift	II.	mV	-12		12	After reliability test,
	$U_{\rm O\;E_drif}$	1117	12			T _A = 25 °C
Sensitivity error lifetime drift	$E_{\mathrm{S_drift}}$	%	-2.3		2.3	After reliability test,
	- S _drift	/0				T _A = 25 °C
Total output error over lifetime drift	E	%	-2.8		2.8	After reliability test,
Total output error over metime unit	$E_{ m total_drift}$	/0	2.0		2.0	T _A = 25 °C

Electrical data GXS ANF 10-4 30001A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal current	I_{PN}	Α		4		
Primary current, measuring range	I_{PM}	Α	-10		10	
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		1.65		I _{PR} = 0 A
Nominal sensitivity	S_{N}	mV/A		132		
Sensitivity error 1)		%	-2		2	T _A = 25 °C 125 °C
	ε_{S}	70		±2.5		T _A = −40 °C 25 °C
Sum of sensitivity and linearity error @ $T_{\rm A}$ = 25 °C	€ _{S L 25}	% of $I_{\rm PN}$	/	2	1	
	II	mV	-15		15	T _A = 25 °C 125 °C
Electrical offset voltage referred to primary	U_{OE}	OE IIIV		±15		T _A = -40 °C 25 °C
Electrical offset current referred to primary	Ioe	mA	-113.64		113.64	
Total output error	E	% of I	-2		2	T _A = 25 °C 125 °C
Total output error	$E_{ m total}$	% of I_{PN}		±2.5		T _A = −40 °C 25 °C
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12		12	After reliability test,
	O E_drif					T _A = 25 °C
Sensitivity error lifetime drift	$E_{\mathrm{S_drift}}$	%	-2.3		2.3	After reliability test,
	S_drift		-			T _A = 25 °C
Total output error over lifetime drift	E	%	-2.8		2.8	After reliability test,
Total output offor over meanine and	$E_{ m total_drift}$, ,				T _A = 25 °C

Electrical data GXS ANF 20-8 50101A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment	
Primary nominal current	I_{PN}	А		8			
Primary current, measuring range	I_{PM}	А	-20		20		
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		U _c / 2		I _{PR} = 0 A	
Nominal sensitivity	S_{N}	mV/A		100			
Sensitivity error ¹⁾		%	-1.5		1.5	T _A = 25 °C 125 °C	
Sensitivity error 7	ε_{S}	70		±1.5		T _A = −40 °C 25 °C	
Sum of sensitivity and linearity error @ T_A = 25 °C	€ _{S L 25}	% of I_{PN}	1	2	/		
	U_{OE}	>/	-10		10	T _A = 25 °C 125 °C	
Electrical offset voltage referred to primary		OE	OE	U_{OE} mV		±10	
Electrical offset current referred to primary	Ioe	mA	-100		100		
Total output error	F	% of I_{PN}	-1.5		1.5	T _A = 25 °C 125 °C	
Total output circl	$E_{ m total}$	70 OI 1 _{P N}		±1.5		T _A = −40 °C 25 °C	
Offset lifetime drift	I.	mV	-12		12	After reliability test,	
	$U_{\rm O~E_drif}$	1114	12			T _A = 25 °C	
Sensitivity error lifetime drift	$E_{\rm S_drift}$	%	-2.3		2.3	After reliability test,	
	5_uiiit					T _A = 25 °C	
Total output error over lifetime drift	$E_{\rm total_drift}$	%	-2.8		2.8	After reliability test,	
Total output offer ever mounts and	total_drift	"				T _A = 25 °C	

Electrical data GXS ANF 20-8 51101A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

200	$I_{\rm PR}$ = 0 A $T_{\rm A}$ = 25 °C 125 °C
200 1.5	
200	
1.5	T _A = 25 °C 125 °C
	T _A = 25 °C 125 °C
±1.5	
1	T _A = -40 °C 25 °C
2 /	
10	T _A = 25 °C 125 °C
±10	T _A = -40 °C 25 °C
50	
1.5	T _A = 25 °C 125 °C
±1.5	T _A = -40 °C 25 °C
12	After reliability test,
	T _A = 25 °C
2.3	After reliability test,
	$T_A = 25 ^{\circ}\text{C}$
2.8	After reliability test, $T_A = 25 ^{\circ}\text{C}$
	50 1.5 ±1.5

Electrical data GXS ANF 20-8 30001A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 3.3 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal current	I_{PN}	А		8		
Primary current, measuring range	I_{PM}	А	-20		20	
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		1.65		$I_{PR} = 0 \text{ A}$
Nominal sensitivity	S_{N}	mV/A		66		
Sensitivity error 1)		%	-2		2	T _A = 25 °C 125 °C
densitivity end.	$\varepsilon_{\rm S}$ %		±2.5		T _A = -40 °C 25 °C	
Sum of sensitivity and linearity error @ T_A = 25 °C	€ _{S L 25}	% of $I_{\rm PN}$	/	2	/	
	U_{OE}	mV	-10		10	T _A = 25 °C 125 °C
Electrical offset voltage referred to primary				±10		T _A = −40 °C 25 °C
Electrical offset current referred to primary	I _{o E}	mA	-151.52		151.52	
Total output error	E	% of I_{PN}	-2		2	T _A = 25 °C 125 °C
Total output on of	$E_{ m total}$	70 OI 1 _{PN}		±2.5		T _A = -40 °C 25 °C
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12		12	After reliability test,
	O E_drif					T _A = 25 °C
Sensitivity error lifetime drift	$E_{\mathrm{S_drift}}$	%	-2.3		2.3	After reliability test,
	3_uiiil					T _A = 25 °C
Total output error over lifetime drift	$E_{\rm total_drift}$	%	-2.8		2.8	After reliability test,
•	total_drift					$T_A = 25 ^{\circ}\text{C}$

Electrical data GXS ANF 25-10 50001A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment			
Primary nominal current	I_{PN}	Α		10					
Primary current, measuring range	I_{PM}	Α	-25		25				
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		2.5		I _{PR} = 0 A			
Nominal sensitivity	S_{N}	mV/A		80					
Sensitivity error 1)		%	-2		2	T _A = 25 °C 125 °C			
	ε_{S}	70		±2.5		T _A = −40 °C 25 °C			
Sum of sensitivity and linearity error @ T_A = 25 °C	ε _{S L 25}	% of $I_{\rm PN}$	1	2	/				
	U_{OE}	.,	-10		10	T _A = 25 °C 125 °C			
Electrical offset voltage referred to primary		UOE	Uoe	OE	Uoe	mV		±10	
Electrical offset current referred to primary	Ioe	mA	-125		125				
Total output error	$E_{ m total}$	% of I_{PN}	-2		2	T _A = 25 °C 125 °C			
Total output error		70 OI 1 _{PN}		±2.5		T _A = -40 °C 25 °C			
Offset lifetime drift	$U_{\mathrm{O\;E\;drif}}$	mV	-12		12	After reliability test,			
	O E_drif					T _A = 25 °C			
Sensitivity error lifetime drift	$E_{\mathrm{S_drift}}$	%	-2.3		2.3	After reliability test,			
						T _A = 25 °C			
Total output error over lifetime drift	$E_{\rm total_drift}$	%	-2.8		2.8	After reliability test,			
•	total_drift	,,,				$T_A = 25 ^{\circ}\text{C}$			

Electrical data GXS ANF 30-12 30101A, (At T_A = -40 °C ... 125 °C, U_C = 3.3 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment	
Primary nominal current	I_{PN}	Α		12			
Primary current, measuring range	I_{PM}	А	-30		30		
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		$U_{\rm c}$ / 2		$I_{PR} = 0 \text{ A}$	
Nominal sensitivity	S_{N}	mV/A		44			
Sensitivity error 1)		%	-2.2		2.2	T _A = 25 °C 125 °C	
Considerity error	ε _s % —		±3.2		T _A = −40 °C 25 °C		
Sum of sensitivity and linearity error @ T_A = 25 °C	€ _{S L 25}	% of $I_{\rm PN}$	/	2	1		
	U_{OE}	>/	-10		10	T _A = 25 °C 125 °C	
Electrical offset voltage referred to primary		OE	OE M	mV		±10	
Electrical offset current referred to primary	I _{o E}	mA	-227.27		227.27		
Total output error	$E_{ m total}$	% of I_{PN}	-2.5		2.5	T _A = 25 °C 125 °C	
Total output cirol	Ltotal			±3.2		T _A = −40 °C 25 °C	
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12	12	12	After reliability test,	
	O E_drif					T _A = 25 °C	
Sensitivity error lifetime drift	$E_{\mathrm{S_drift}}$	%	-2.3		2.3	After reliability test,	
	S_dilit					T _A = 25 °C	
Total output error over lifetime drift	$E_{\mathrm{total_drift}}$	%	-2.8		2.8	After reliability test,	
·	ioiai_uritt					$T_A = 25 ^{\circ}\text{C}$	

Electrical data GXS ANF 30-12 50101A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal current	I_{PN}	А		12		
Primary current, measuring range	I_{PM}	А	-30		30	
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		U _c / 2		I _{PR} = 0 A
Nominal sensitivity	S_{N}	mV/A		66.67		
Sensitivity error 1)		%	-1.5		1.5	T _A = 25 °C 125 °C
Sensitivity error	$\varepsilon_{\rm S}$	70		±1.8		T _A = −40 °C 25 °C
Sum of sensitivity and linearity error @ T_A = 25 °C	ε _{S L 25}	% of $I_{\rm PN}$	1	2	/	
	U_{OE}	mV	-10		10	T _A = 25 °C 125 °C
Electrical offset voltage referred to primary				±10		T _A = −40 °C 25 °C
Electrical offset current referred to primary	I _{o E}	mA	-150		150	
Total output error	$E_{ m total}$	% of I_{PN}	-1.5		1.5	T _A = 25 °C 125 °C
Total output error		70 OI 1 _{P N}		±1.8		T _A = −40 °C 25 °C
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12		12	After reliability test,
	O E_drif	111.4		12		T _A = 25 °C
Sensitivity error lifetime drift	$E_{\rm S_drift}$	%	-2.3		2.3	After reliability test,
-	S_arift					T _A = 25 °C
Total output error over lifetime drift	$E_{\rm total_drift}$	%	-2.8		2.8	After reliability test,
	total_drift					$T_{\rm A}$ = 25 °C

Electrical data GXS ANF 40-16 50101A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal current	I_{PN}	Α		16		
Primary current, measuring range	I_{PM}	А	-40		40	
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		U _c / 2		$I_{PR} = 0 \text{ A}$
Nominal sensitivity	S_{N}	mV/A		50		
Sensitivity error 1)	6	%	-2.2		2.2	T _A = 25 °C 125 °C
ochsitivity choi	€ _s	70		±3.2		T _A = −40 °C 25 °C
Sum of sensitivity and linearity error @ T_A = 25 °C	€ _{S L 25}	% of I_{PN}	/	2	/	
Electrical offset voltage referred to primary	U _{OE}	mV	-10		10	T _A = 25 °C 125 °C
				±10		T _A = −40 °C 25 °C
Electrical offset current referred to primary	I _{OE}	mA	-200		200	
Total output error	$E_{ m total}$	% of I_{PN}	-2.5		2.5	T _A = 25 °C 125 °C
Total output error		70 OI 1 _{P N}		±3.2		T _A = −40 °C 25 °C
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12	-12	12	After reliability test,
	O E_drif		· -			T _A = 25 °C
Sensitivity error lifetime drift	$E_{\rm S_drift}$	%	-2.3		2.3	After reliability test,
<u> </u>	J _uiiit					T _A = 25 °C
Total output error over lifetime drift	E	%	-2.8		2.8	After reliability test,
	$E_{\rm total_drift}$, ,				$T_{\rm A}$ = 25 °C

Electrical data GXS ANF 50-20 50001A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment		
Primary nominal current	I_{PN}	А		20				
Primary current, measuring range	I_{PM}	Α	-50		50			
Internal reference voltage @ IP = 0 A	$U_{\mathrm{I ref}}$	V		2.5		I _{PR} = 0 A		
Nominal sensitivity	S_{N}	mV/A		40				
Sensitivity error 1)	ε_{s}	%	-2.2		2.2	T _A = 25 °C 125 °C		
	S 70		±3.2		T _A = -40 °C 25 °C			
Sum of sensitivity and linearity error @ $T_{\rm A}$ = 25 °C	€ _{S L 25}	% of I_{PN}	/	2	/			
Flactuical offices weltons referred to missen.	U_{OE}	mV	-10		10	T _A = 25 °C 125 °C		
Electrical offset voltage referred to primary		OE	OE	OE	IIIV		±10	
Electrical offset current referred to primary	I _{OE}	mA	-250		250			
Total output error	E	F	% of <i>I</i>	-2.5		2.5	T _A = 25 °C 125 °C	
Total output error	$E_{ m total}$	% of I_{PN}		±3.2		T _A = -40 °C 25 °C		
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12		12	After reliability test,		
	O L_dill					$T_{\rm A}$ = 25 °C After reliability test,		
Sensitivity error lifetime drift	$E_{\rm S_drift}$	%	-2.3		2.3	$T_{\rm A} = 25 ^{\circ}\text{C}$		
Total output error over lifetime drift	E	%	-2.8		2.8	After reliability test,		
Total output offor over metime unit	$E_{ m total_drift}$	70	2.0		2.0	T _A = 25 °C		

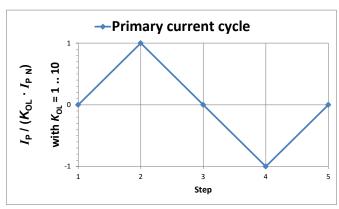
Electrical data GXS ANF 50-20 50101A, (At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = 5 V , unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Comment																									
Primary nominal current	I_{PN}	А		20																											
Primary current, measuring range	I_{PM}	А	-50		50																										
Internal reference voltage @ IP = 0 A	$U_{\mathrm{l}\mathrm{ref}}$	V		U _c / 2		$I_{PR} = 0 \text{ A}$																									
Nominal sensitivity	S_{N}	mV/A		40																											
Sensitivity error ¹⁾	٤	%	-2.2		2.2	T _A = 25 °C 125 °C																									
	s s	$\varepsilon_{\rm S}$	s /0		±3.2		T _A = -40 °C 25 °C																								
Sum of sensitivity and linearity error @ $T_{\rm A}$ = 25 °C	€ _{S L 25}	% of I_{PN}	1	2	1																										
Electrical offset voltage referred to primary	17	mV	-10		10	T _A = 25 °C 125 °C																									
Electrical offset voltage referred to primary	U_{OE}	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE	1110		±10		T _A = −40 °C 25 °C
Electrical offset current referred to primary	I _{OE}	mA	-250		250																										
Total autout arrar	$E_{ m total}$	0/ of I	-2.5		2.5	T _A = 25 °C 125 °C																									
Total output error		L total	L total	£ _{total}	L total	E _{total}	L _{total}	E _{total}	% of I_{PN}		±3.2		T _A = −40 °C 25 °C																		
Offset lifetime drift	$U_{\rm O\;E_drif}$	mV	-12		12	After reliability test,																									
	O E_dill					T _A = 25 °C																									
Sensitivity error lifetime drift	$E_{\rm S_drift}$	%	-2.3		2.3	After reliability test, $T_A = 25 ^{\circ}\text{C}$																									
Total output error over lifetime drift	F	%	-2.8		2.8	After reliability test,																									
	$E_{ m total_drift}$	70	2.0		2.0	T _A = 25 °C Page 13/19																									

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.


Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.

For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of the product.

Performance parameters definition

 K_{OI} : Overload factor

Figure 1: Current cycle used to measure electrical offset (transducer supplied)

Electrical offset referred to primary

Using the current cycle shown in figure 1, the electrical offset voltage $U_{\mathrm{O}\,\mathrm{E}}$ is the residual output referred to primary when the input current is zero.

$$U_{\rm O\,E} = \frac{U_{\rm P(3)} + U_{\rm P(5)}}{2}$$

The temperature variation $U_{{\rm O}^{\, {\rm \scriptscriptstyle T}}}$ of the electrical offset voltage $U_{
m O\,E}$ is the variation of the electrical offset from 25 °C to the considered temperature.

$$U_{OT}(T) = U_{OF}(T) - U_{OF}(25 \,^{\circ}\text{C})$$

Delay times

The delay time $t_{\rm D\,10}$ @ 10 % and the delay time $t_{\rm D\,90}$ @ 90 % with respect to the primary are shown in the next figure. Both slightly depend on the primary current di/dt. They are measured at nominal current.

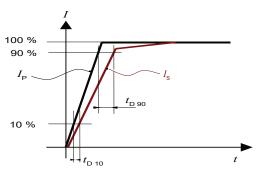


Figure 2: $t_{\rm D~10}$ (delay time @ 10 %) and $t_{\rm D~90}$ (delay time @ 90 %)

Total error referred to primary

The total error $\varepsilon_{\rm tot}$ is the error at $\pm I_{\rm P\,N}$, relative to the rated value $I_{\rm P\,N}.$ It includes all errors mentioned above

- the electrical offset I_{OF}
- the magnetic offset I_{OM}
- the sensitivity error ε_s
- the linearity error ε_I (to I_{P N}).

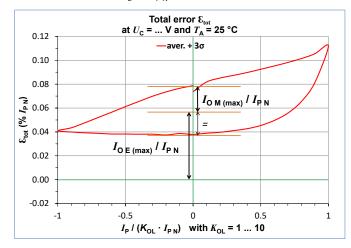
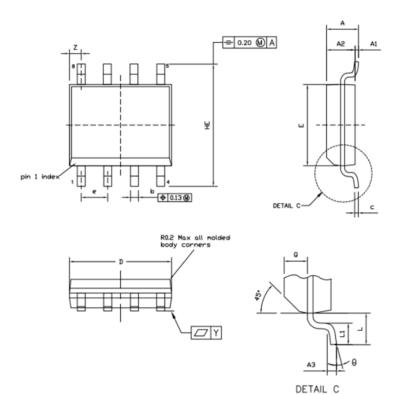
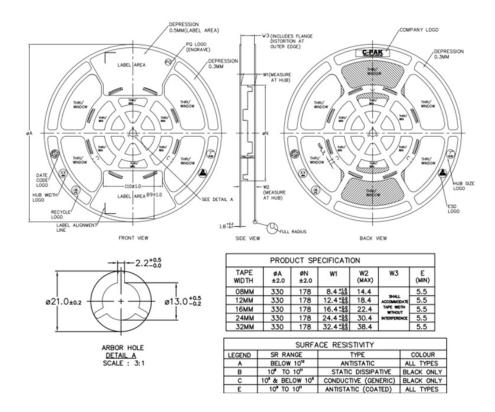
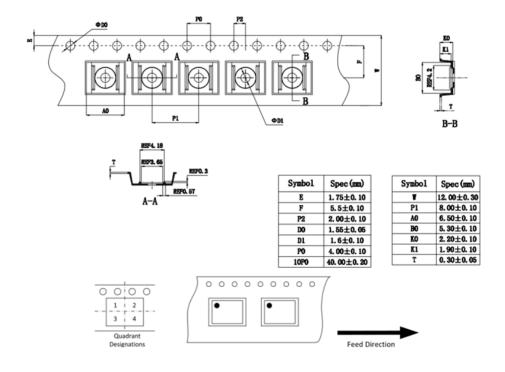



Figure 3: Total error ε_{tot}

Dimensions (in mm)




* CONTROLLING DIMENSION : MM

SYMBOL	MILLIMETER						
	MIN.	NDM.	MAX.				
Α			1.75				
A1	0.10		0.25				
SA	1.25	1.35	1.45				
b	0.33	0.38	0.49				
С	0.19	0.20	0.25				
D	4.80	4.90	5.00				
Ε	3.80	3.90	4.00				
Q	0.60	0.65	0.70				
HE	5.80	6.00	6.20				
e	1	.27 BS	SC				
L	1	.05 BS	C				
L1	0.40	0.64	1.00				
Υ		0.10					
Z	0.3	0.5	0.7				
A3	0.	25 BS	C				
θ	0*	5*	8*				

Tape and Reel (in mm)

Safety

If the device is used in a way that is not specified by the manufacturer, the protection provided by the device may be compromised. Always inspect the electronics unit and connecting cable before using this product and do not use it if damaged.

Mounting assembly shall guarantee the maximum primary conductor temperature, fulfill clearance and creepage distance, minimize electric and magnetic coupling, and unless otherwise specified can be mounted in any orientation.

Caution, risk of electrical shock

This transducer must be used in limited-energy secondary circuits SELV according to IEC 61010-1, in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating specifications.

Use caution during installation and use of this product; certain parts of the module can carry hazardous voltages and high currents (e.g. power supply, primary conductor).

Ignoring this warning can lead to injury and or/or cause serious damage.

This transducer is a build-in device, whose hazardous live parts must be inaccessible after installation.

This transducer must be mounted in a suitable end-enclosure.

Besides make sure to have a distance of minimum 30 mm between the primary terminals of the transducer and other neighboring components.

This transducer is a built-in device, not intended to be cleaned with any product. Nevertheless if the user must implement cleaning or washing process, validation of the cleaning program has to be done by himself.

ESD susceptibility

The product is susceptible to be damaged from an ESD event and the personnel should be grounded when handling it.

Do not dispose of this product as unsorted municipal waste. Contact a qualified recycler for disposal.

Although LEM applies utmost care to facilitate compliance of end products with applicable regulations during LEM product design, use of this part may need additional measures on the application side for compliance with regulations regarding EMC and protection against electric shock. Therefore LEM cannot be held liable for any potential hazards, damages, injuries or loss of life resulting from the use of this product.

Underwriters Laboratory Inc. recognized component

IMPORTANT NOTICE

The information in this document is considered accurate and reliable. However, LEM International SA and any company directly or indirectly controlled by LEM Holding SA ("LEM") do not provide any guarantee or warranty, expressed or implied, regarding the accuracy or completeness of this information and are not liable for any consequences resulting from its use. LEM shall not be responsible for any indirect, incidental, punitive, special, or consequential damages (including, but not limited to, lost profits, lost savings, business interruption, costs related to the removal or replacement of products, or rework charges) regardless of whether such damages arise from tort (including negligence), warranty, breach of contract, or any other legal theory.

LEM reserves the right to update the information in this document, including specifications and product descriptions, at any time without prior notice. Information in this document replaces any previous versions of this document. No license to any intellectual property is granted by LEM through this document, either explicitly or implicitly. Any Information and product described herein is subject to export control regulations.

LEM products may possess either unidentified or documented vulnerabilities. It is the sole responsibility of the purchaser to design and operate their applications and products in a manner that mitigates the impact of these vulnerabilities. LEM disclaims any liability for such vulnerabilities. Customers must select products with security features that best comply with applicable rules, regulations, and standards for their intended use. The purchaser is responsible for making final design decisions regarding its products and for ensuring compliance with all legal, regulatory, and security-related requirements, irrespective of any information or support provided by LEM.

LEM products are not intended, authorized, or warranted for use in life support, life-critical, or safety-critical systems or equipment, nor in applications where failure or malfunction of an LEM product could result in personal injury, death, or significant property or environmental damage. LEM and its suppliers do not assume liability for the inclusion and/or use of LEM products in such equipment or applications; thus, this inclusion and/or use is at the purchaser's own and sole risk. Unless explicitly stated that a specific LEM product is automotive qualified, it should not be used in automotive applications. LEM does not accept liability for the inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

Applications that are described herein are for illustrative purposes only. LEM makes no representation or warranty that LEM products will be suitable for a particular purpose, a specified use or application. The purchaser is solely responsible for the design and operation of its applications and devices using LEM products, and LEM accepts no liability for any assistance with any application or purchaser product design. It is purchaser's sole responsibility to determine whether the LEM product is suitable and fit for the purchaser's applications and products planned, as well as for the planned application and use of purchaser's third-party customer(s).

Stressing and using LEM products at or above limiting values will cause permanent damage to the LEM product and potentially to any device embedding or operating with LEM product. Limiting values are stress ratings only and operation of the LEM product at or above conditions and limits given in this document is not warranted. Continuous or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the LEM product.

LEM products are sold subject to the general terms and conditions of commercial sale, as published at www.lem.com unless otherwise agreed in a specific written agreement. LEM hereby expressly rejects the purchaser's general terms and conditions for purchasing LEM products by purchaser. Any terms and conditions contained in any document issued by the purchaser either before or after issuance of any document by LEM containing or referring to the general terms and conditions of sale are explicitly rejected and disregarded by LEM, and the document issued by the purchaser is wholly inapplicable to any sale or licensing made by LEM and is not binding in any way on LEM.

© 2025 LEM INTERNATIONAL SA – All rights reserved