

AUTOMOTIVE CURRENT TRANSDUCER FLUXGATE TECHNOLOGY CAB-SF 500-C

Introduction

The CAB-SF family is the best suited for battery monitoring application where functional safety is required by keeping a high accuracy and very low offset.

It offers galvanic insulation between the primary circuit (high voltage) and the secondary circuit (12 V system).

Features

- Certified ASIL B acc. ISO 26262
- Transducer using Fluxgate technology
- Unlimited over-current capability
- Unipolar +12 V battery power supply
- Output signal: High speed CAN (500 kbps)
- Plug&Play with standard CAB family
- Mating connector type: Tyco AMP 1473672-1.

Advantages

- Offset below 10 mA
- Total error [-40 °C to 85 °C]
 0.5 % typical total error at 1-sigma
 0.8 % total error at 3-sigma
- Full galvanic separation.

Automotive applications

- Hybrid and electric vehicle battery pack
- Conventional lead-acid batteries
- Accurate current measurement for battery management applications (SOC, SOH, SOF, etc...).

Principle of Fluxgate Transducers

A low-frequency fluxgate transducer is made of a wound core which saturates under low induction.

A current chopper switches the winding's current to saturate the magnetic core alternatively at $\pm B$ max with a fixed frequency. Fluxgate transducers use the change of the saturation's point

symmetry to measure the primary current. Due to the principle of switching the current, all offsets (electric

Due to the principle of switching the current, all offsets (electric and magnetic) are cancelled.

Dimensions CAB-SF 500-C series (in mm)

CAB-SF 500-C

Mechanical characteristics

- Plastic case
 PBT GF 30
- Mass 67 g

Mounting recommendation

- Connector type Mating with Tyco-AMP P/N: 1 473672-1
- Assembly: Sensor must be assembled using plastic-rivet
- Maximum load on fixing ears: 70 N

Marking

- DESIGNATION
- DATE CODE
- P = Production center ID

CAB-SF 500-C

- YY = Last two digit of the year
- DDD = Day number of the year
- CC = Machine ID
- HH = Hour
- MM = Minute
- SS = Second
- J = Machine jig ID

2D MATRIX 90.D9.50.000.0PYYDDDCCHHMMSSJ.

• Example

Absolute ratings (not operating)

CAB-SF 500-C

Parameter	Symbol	Unit	Specification	Conditions
Over-voltage	Uc	V	24	1 minute
Reverse polarity	Uc	V	-14	1 minute
Minimum supply voltage	$U_{ m Cmin}$	V	6	continuous, not measuring
Maximum supply voltage	$U_{ m C\ max}$	V	18	continuous, not measuring
Ambient storage temperature	T _{Ast}	°C	-40 / +105	
Creepage distance	d _{Cp}	mm	7.2	
Clearance	d _{ci}	mm	6.95	
RMS voltage for AC insulation test	$U_{\rm d}$	kV	2.5	50 Hz,1 min
Insulation resistance	R _{INS}	MΩ	500	500 V -ISO 16750-2
IP Level			IP42	

Characteristics in nominal range

Poromotor	Sumbol	Unit	S	pecificatio	n	Conditions	
Parameter	Symbol	Unit	Min	Typical	Max	Conditions	
		El	ectrical Da	ta			
Supply voltage	Uc	V	8.5	13.5 ¹⁾	16		
Current consumption @ $I_{\rm P}$ = 0 A	I _c	mA		30	40	$@U_c = 13.5 \text{ V}, \text{CAN acknowledge}$	
Current consumption @ $\pm I_{\rm p}$ = 500 A	I _c	mA		150	200	@ $U_{\rm c}$ = 13.5 V, CAN acknowledge	
Ambient operating temperature	T_{A}	°C	-40		85		
	·	Perf	ormance D	ata		·	
Primary nominal DC or RMS current	I _{PN}	Α	-500		500		
Current clamping value		A	-530		530	For I_p between -530 A and minus over current value For I_p between +530 A and plus over current value	
Output frequency of CAN signal ²⁾		Hz		100		With Periodic CAN message @ 10 ms	
Start-up time	t _{start}	ms		150			
		Analog m	easuremer	nt Channel			
Linearity error	ε _L	%		±0.1		At room temperature	
Typical total error	€ _{tot}	%		±0.5		See table next page	
Output noise		mA		±10		With Periodic CAN message @ 10 ms Peak to peak value. No averaging.	
		Digital me	asurement	t channel ³⁾			
Total error	€ _{tot}	%		±5			

Notes: 1) For the classical 12 V Lead-acid battery system, the mean value of battery voltage becomes to 13.5 V during charging 2) Output frequency depends on the emission period of the frame without digital filter

3) Digital measurement is only for internal safety function.

Page 3/12

Total Error Graph-Analog Measurement Channel

CAB-SF 500-C

Performances are considered with average value over 10 CAN frames (100 ms)

I _P (A)	Total error @ 25 °C (A)	Total error @ −40 °C to 85 °C (A)
-500	±2	±4
0	±0.01	±0.01
500	±2	±4

Page 4/12

Typical noise shape at primary current = 0 A

CAB-SF 500-C

Page 5/12

CAN output specification

- CAN protocol 2.0B
- Bit order: big endian (Motorola)
- CAN oscillator tolerance: 0.27 %
- No sleep mode capability
- 120 ohm termination resistor to be added externally, internal CAN impedance = 4.8 kohm.

Message Description	CAN ID	Name	Data Length (Nb bytes)	Type of frame	Message launch type	Signal name	Start bit	Length
				Standard		CSM_BAT_CURRENT 1)	24	32
	0x3C2 CAB50	CAB500_I _P	8			ERROR_INDICATION 2)	32	1
					Periodic frame Period : 10 ±1 ms	CSM_FAIL 3)	33	7
Return Current I _P (mA)						ISO_WARNING 4)	40	1
						SF_COUNTER ⁵⁾	41	7
						SOFT_MAJOR_REV 6)	48	8
						SOFT_MINOR_REV 7)	56	8
	0x68D	UDS_CLIENT	8	Standard				
	0x68E	UDS_SERVER	8	Standard				

Notes: CAB-SF 500-C I_P message description

- 1) CSM_BAT_CURRENT
 - *I*_P Value: 8000000H = 0 mA 7FFFFFFH = -1 mA

8000001H = 1 mA

- $0 \le I_P \le 530 \text{ A } I_P$ Value follows the primary current value
- I_P over 530 A until overcurrent detected, I_P value clamped to 530 A
- Same behavior for negative current.

2) ERROR_INDICATION

• 0 = Normal; 1 = Failure

Page 6/12

3) CSM_FAIL

CAB-SF 500-C

Piority	Failure Mode	Error Information	Filter ⁽¹⁾	Error Indication	I _P value
1	Supply voltage (2)	0x46	0.1/0.12	1	0xFFFFFFF
2	Hardware defect: Reference voltage	0x4B	0.1/0.12	1	0xFFFFFFF
3	Temperature ⁽³⁾	0x44	0.1/0.12	1	0xFFFFFFF
4	Hardware defect: DAC Threshold	0x4A	0.1/0.12	1	0xFFFFFFF
5	Hardware defect: ADC channel	0x47	0.1/0.12	1	0xFFFFFFF
6	Safety goal violation	0x4C	0.25/0.25	1	I _P Value
7	New Data not available	0x49	NO	1	0xFFFFFFF
8	Fluxgate under frequency	0x42	0.25/0.3	1	0xFFFFFFF
9	Overcurrent detection	0x41	0.02/0.02	1	0xFFFFFFFF

(1) x/y : Error should be active for 'x' seconds to set the 'ERROR_INDICATION' and 'CSM_FAIL' signal. 'y' seconds to clear the signal.

(2)	Supply Voltage (V)		6.0		7.2	7.6		17.1	17.9		20.0	
Error Information	-		0x46	-		No Error		٠	0x46		-	
				0x46	•	No Error	+	0x46			-	
	CAN Emission status	Disable	+				Enable				+	Disable

(3) At sensor start-up, if supply voltage < 7.2 V or > 17.9 V, no CAN frame emission

Temperature °C		-50		130	
Error Information	0x44	-	No Error	-	0x44

4) ISO_WARNING

- Indicate that the absolute difference between the analog and digital measurement is below/ higher than Threshold
- Filtering: Signal set to be '1' when the difference is above **Threshold** for at least 50ms. The signal reset to be '0' when the difference below **Threshold** for at least 60 ms.
- Threshold:
 - 5 % at [-530 A,-20 A] & [20 A, 530 A] 2 A at]-20 A, 20 A[

5) SF_COUNTER

- 'SF_COUNTER' shows the progression of the filtering on failure mode The 'Safety goal violation' error (CSM_FAIL = 0x4C)
- 'SF_COUNTER' increases if the absolute difference between the analog and digital measurement is higher than threshold; 'SF_ COUNTER' decrease if the absolute difference below threshold
- Error 'Safety goal violation' is set when 'SF_COUNTER' reaches 50. The error is reset when 'SF_COUNTER' goes below 25
- Threshold:
 - 20 % at [-530 A,-20 A] & [20 A, 530 A] 5 A at]-20 A, 20 A[
- 6) SOFT_MAJOR_REV
- 7) SOFT_MINOR_REV
 - Information about the software release

Page 7/12

SAFETY GOALS for CAB-SF 500-C

CAB-SF 500-C

An hazard analysis was performed for the CAB-SF 500-C sensor. A list of hazard events have been identified and an ISO26262 rating has been made for each of them. The highest quotation for which the product meets is ASILB level. The electronic design followed the guidelines and development methods recommended by ISO26262. The constituent elements of the safety case can be consulted on request.

Page 8/12

Applicable standards

CAB-SF 500-C

Test	Standard	Procedure		
	Environmental test	I		
Low Temperature Operating Endurance	ISO 16750-4 (04/2010)	120 hrs, −40 °C, power on		
High Temperature Operating Endurance	ISO 16750-4 (04/2010)	85 °C, 120 hrs, power on		
Powered Thermal Cycle Endurance	ISO16750-4 (04/2010)	-40 °C (20 mins soak) / +85 °C (20 mins soak), slope 4 °C/min, 540 cycles (936 h, 39 days), power supply 13.5 V		
Thermal Shock	ISO 16750-4 (04/2010)	 −40 °C (20 mins soak) / +85 °C (20 mins soak), 1000 cycles (667 h, 28 days); no power supply 		
High Temperature and Humidity Endurance	JESD 22-A101 (03/2009)	85 °C, 85 % humidity, 1000 hrs		
Random Vibration	ISO 16750-3 (12/2012)	Test IV, -40 °C / +85 °C during 8 hours (Fig.1), RMS acceleration 27.1 m/s ² , 20 h/axis, 3 axis+, power on and output monitoring		
Mechanical Shocks	ISO 16750-3 (12/2012)	500 m/s ² , 10 each direction (60 total), Half sine pulse		
Free Fall	ISO 16750-3 (12/2012)	2 falls per DUT, 3 axis, total 6 falls, from 1 meter on concrete floor		
Water Intrusion	DIN 40050-9 (1993-05)	IPx2, flow 3 (+0.5/0) mm/min, 10 mins, connector downward, parts inclined at 15°		
Dust (and other solid intrusion)	DIN 40050-9 (1993-05)	IP4x, The rigid stem, 1 mm diameter, is pressed against t casing of the part with a 1N force Vertical flow chamber, Portland cement, 2 kg/m^3, 6 s ON/15 min OFF for 20 cycles, parts inclined at 15°		
Mixed Flowing Gas	IEC60068-2-60 (12/1996)	Mehod4 in Table1, H2S, NO2, Cl2, SO2, 25 ±1 °C, <i>RH</i> 75 ±3 %, 21 days		
Salt Fog	NISSAN M0158 (2009) / M0140 (2014)	NaCl 50 g/L, Cycle: salt spray 4 hrs, dry 2 hrs with 60 °C < 30 % <i>RH</i> , moistening 2 hrs with 50 °C 95 % <i>RH</i> , 110 cycles		
	EMC test	-		
Conduted emission- Voltage method	CISPR 25 (03/2008)	150 kHz-108 MHz Class 4 (LW,VHF (68-87 MHz),FM); Class 3 (MW,SW,CB); Class 2 (VF (30-54 MHz))		
Conducted emission- Current method	CISPR 25 (03/2008)	150 kHz -245 MHz Class 4 (only for LW, FM); Class 3 (Rest frequency)		
Radio frequency radiated Emission electric field	CISPR 25 (04/2016)	Class 5 (FM); Class 4 (LW,VHF (68-87 MHz),GSM, EGSM/GSM 900); Class 2 (VHF (30-54 MHz),VHF (142-175 MHz)) ; Class 3 (Rest frequency)		
IMMUNITY TO CURRENT INJECTION (BCI)	ISO 11452-4 (12/2011)	1 MHz to 400 MHz Level 1 100 mA: Class A; Level 2 200 mA: Class C; Level 3 300 mA: Class C		
Immunity to Radiated field- Anechoic chamber (ALSE with ground plane)	ISO 11452-2	200 MHz-3.2 GHz; 150 V/m Class A		
RESISTANCE TO PULSES 1, 2A,2B (Transient Disturbance conducted along supply line)	ISO-7637-2 (03/2011)	pulse 1, pulse 2a 500 pulses; pulse 2b 10 pulses Class C		
Resistance to pulses 3a & 3b (Transient Disturbance conducted along supply line)	ISO-7637-2 (03/2011)	pulse 3a, pulse 3b time duration = 1 hour Class A		

3April2023/Version 4

Page 9/12 LEM International SA Route du Nant-d'Avril, 152 1217 Meyrin www.lem.com

CAB-SF 500-C

Resistance to pulses 4 (Starting profile)	ISO 16750-2 § 4.6.3 (11/2012)	pulse 4 10 pulses Test level I: Class A; Test level II: Class C; Test level III: Class C
Load Dump	ISO 16750-2 § 4.6.4.2.3	$U_{\rm A}$ = 14 V, $U_{\rm S}^{*}$ = 29 V, $R_{\rm I}$ < 1 ohm $t_{\rm D}$ = 400 ms 5 pulses Class C
Transient disturbance conducted along i/o or sensor lines	ISO-7637-3 (07/2007)	Fast pulse a: CCC Fast pulse b: CCC Slow pulse +: DCC Slow pulse -: DCC level IV Class A
RESISTANCE TO ELECTROSTATIC DISCHARGES, EQUIPMENT NOT CONNECTED(handling)	ISO 10605 IEC 61000-4-2 (2008)	U _{N-powered} ±2 kV ±4 kV air: ±8 kV ±15 kV
ESD Operating	ISO 10605 IEC 61000-4-2 (2008)	Powered indirect contact discharge: ±4 kV air: ±8 kV
	Electrical test	
Direct current supply voltage	ISO 16750-2 § 4.2 (11/2012)	Code B
Overvoltage	ISO 16750-2 § 4.3.1 (11/2012)	18 V, 1 h, @ 65 °C ; 24 V, 1 min, @ 25 °C
Superimposed Alternating Voltage	ISO 16750-2 § 4.4 (11/2012)	-severity 2: U _{pp} = 4 V -severity 4: U _{pp} = 2 V
Resistance to slow decrease and increase of supply voltage	ISO 16750-2 § 4.5 (11/2012)	U_{min} = 8 V, 0.5 V/min, Run DUT 10 mins
Momentary drop in supply voltage	ISO 16750-2 § 4.6.1 (11/2012)	Room temperature, $U_{\text{S min}}$ to 4.5 V
Re-initialization test (Reset behaviour at voltage drop)	ISO 16750-2 § 4.6.2 (11/2012)	$U_{\rm Smin}$ = 8 V
Reverse voltage	ISO 16750-2 § 4.7 (11/2012)	Case 2
Ground reference and supply voltage	ISO 16750-2 § 4.8 (11/2012)	Offset voltage = 1.0 ±0.1 V
Open Circuit	ISO 16750-2 § 4.9 (11/2012)	Single line / Multiple line interruption
Short circuit protection	ISO 16750-2 § 4.10.2 (11/2012)	Signal circuits, $U_{\rm Smax}$ = 16 V and GND, duration 60 s
RESISTANCE TO SHORT INTERRUPTION OF THE POWER SUPPLY	PSA B217110 E § 7.1.13 no reference	<i>U</i> s = 14 V, <i>t</i> _D = 2 μs,1 ms, 5 ms
resistance to "volt control" voltage pulse	PSA B217110 E § 7.1.16 no reference	U 1 = 15.2 V; U 2 = 18.0 V; t_r = 1 ms; t_f = 300 ms 5 pulse with an interval of 1 min
resistance to supply voltage in the usual "volt control" range	PSA B217110 E § 7.1.2 no reference	U_{min} = 10.5 V; U_{max} = 16 V; t_{D} = 5 s; R_{r} = 10 V/s 5 pulse with an interval of 1 min

Page 10/12

Installation influence

CAB-SF 500-C

Overview

The CAB 500-C family uses a very accurate and sensitive technology and offers the customers the current measurement needed to the application.

In order to respect this accuracy, some conditions must be respected during the design of the environment of the sensor:

- Primary busbar centering
- Busbar shape
- Contactors

The busbar dimension for test: 20 mm (W) x 3 mm (H) Environment: room temperature.

Due to the complexity of practical application, the examples cannot cover all the application conditions.

It can be reference during BDU design, but the performance validation of BDU is necessary.

The sensor has different performance on different angles. For details or any further questions, please contact LEM Technical Customer Support.

Current ripple influence

The CAB-SF 500-C might be disturbed by current ripples produced by inverters and electric machines. When the frequency of the current ripples gets close to the fluxgate coil's frequency, then the coil's frequency might get locked to the ripple current frequency. The CAB-SF 500-C will detect it as ISO error flags.

If such situation happens systematically during your testings linked to inverter/electric machines, please contact your LEM window for further technical support.

Return busbar type definition

Explanation: Recommended / Case of accuracy close to the limit / Not recommended

3April2023/Version 4

LEM reserves the right to carry out modifications on its transducers, in order to improve them. LEM International SA Route du Nant-d'Avril, 152 1217 Meyrin www.lem.com