

Current Transducer CKSR 75-NP/SP1

$I_{PN} = 75 \text{ A}$

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Closed loop (compensated) multi-range current transducer
- Voltage output
- Single supply
- Compact design for PCB mounting.

Special features

- Dedicated 5 primary conductors configuration
- Anti-sulfuration resistors used.

Advantages

- Very low temperature coefficient of offset
- Very good du/dt immunity
- Reduced height
- Reference pin with two modes: Ref IN and Ref OUT
- Extended measuring range for unipolar measurement.

Applications

- AC variable speed and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Solar inverters.

Standards

- IEC 60950-1: 2006
- IEC 61010-1: 2010
- IEC 61326-1: 2012
- UL 508: 2010.

Application Domain

- Industrial.

Safety

Caution

If the device is used in a way that is not specified by the manufacturer, the protection provided by the device may be compromised. Always inspect the electronics unit and connecting cable before using this product and do not use it if damaged. Mounting assembly shall guarantee the maximum primary conductor temperature, fulfill clearance and creepage distance, minimize electric and magnetic coupling, and unless otherwise specified can be mounted in any orientation.

Caution, risk of electrical shock

This transducer must be used in limited-energy secondary circuits SELV according to IEC 61010-1, in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating specifications.

Use caution during installation and use of this product; certain parts of the module can carry hazardous voltages and high currents (e.g. power supply, primary conductor).

Ignoring this warning can lead to injury and/or cause serious damage.

De-energize all circuits and hazardous live parts before installing the product.

All installations, maintenance, servicing operations and use must be carried out by trained and qualified personnel practicing applicable safety precautions.

This transducer is a build-in device, whose hazardous live parts must be inaccessible after installation.

This transducer must be mounted in a suitable end-enclosure.

Besides make sure to have a distance of minimum 30 mm between the primary terminals of the transducer and other neighboring components.

Main supply must be able to be disconnected.

Never connect or disconnect the external power supply while the primary circuit is connected to live parts.

Never connect the output to any equipment with a common mode voltage to earth greater than 30 V.

Always wear protective clothing and gloves if hazardous live parts are present in the installation where the measurement is carried out.

This transducer is a built-in device, not intended to be cleaned with any product. Nevertheless if the user must implement cleaning or washing process, validation of the cleaning program has to be done by himself.

When defining soldering process, please use no cleaning process only.

ESD susceptibility

The product is susceptible to be damaged from an ESD event and the personnel should be grounded when handling it.

Do not dispose of this product as unsorted municipal waste. Contact a qualified recycler for disposal.

Although LEM applies utmost care to facilitate compliance of end products with applicable regulations during LEM product design, use of this part may need additional measures on the application side for compliance with regulations regarding EMC and protection against electric shock. Therefore LEM cannot be held liable for any potential hazards, damages, injuries or loss of life resulting from the use of this product.

Underwriters Laboratory Inc. recognized component

Absolute maximum ratings

CKSR 75-NP/SP1

Parameter	Symbol	Unit	Value
Maximum supply voltage	$U_{C\max}$	V	7
Maximum primary conductor temperature	$T_{B\max}$	°C	110
Maximum primary current	$I_{P\max}$	A	$20 \times I_{P_N}$
Maximum ESD rating, Human Body Model (HBM)	$U_{ESD\max}$	kV	4

Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may degrade reliability.

UL 508: Ratings and assumptions of certification

File # E189713 Volume: 2 Section: 1

Standards

- CSA C22.2 NO. 14-10 INDUSTRIAL CONTROL EQUIPMENT - Edition 11
- UL 508 STANDARD FOR INDUSTRIAL CONTROL EQUIPMENT - Edition 17

Ratings

Parameter	Symbol	Unit	Value
Primary involved potential		V AC/DC	1000
Max surrounding air temperature	T_A	°C	105
Primary current	I_P	A	75
Secondary supply voltage	U_C	V DC	5
Output voltage	U_{out}	V	0 to 5

Conditions of acceptability

When installed in the end-use equipment, consideration shall be given to the following:

- 1 - These devices must be mounted in a suitable end-use enclosure.
- 2 - CKSR series intended to be mounted on the printed circuit wiring board of the end-use equipment (with a minimum CTI of 100).
- 3 - CKSR series shall be used in a pollution degree 2.
- 4 - Low voltage circuits are intended to be powered by a circuit derived from an isolating source (such as transformer, optical isolator, limiting impedance or electro-mechanical relay) and having no direct connection back to the primary circuit (other than through the grounding means).
- 5 - CKSR series: based on results of temperature tests, in the end-use application, a maximum of 100 °C cannot be exceeded at soldering joint between primary coil pin and soldering point (corrected to the appropriate evaluated max. surrounding air).

Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RMS voltage for AC insulation test, 50 Hz, 1 min	U_d	kV	4.1	
Impulse withstand voltage 1.2/50 μ s	U_{Ni}	kV	7.5	
Partial discharge RMS test voltage ($q_m < 10$ pC)	U_t	V	1000	
Clearance (pri. - sec.)	d_{Cl}	mm	7.5	Shortest internal distance through air ¹⁾
Creepage distance (pri. - sec.)	d_{Cp}	mm	7.5	Shortest internal path along device body ¹⁾
Clearance (pri. - sec.)	d_{Cl}	mm	6.1	When mounted on PCB with recommended layout
Creepage distance (pri. - sec.)	d_{Cp}	mm	6.1	When mounted on PCB with recommended layout
Case material	-	-	V0	According to UL 94
Comparative tracking index	CTI		600	
Application example RMS voltage line-to-neutral	-	V	300	Reinforced insulation, according to IEC 61010-1 CAT III PD2
Application example RMS voltage line-to-neutral	-	V	600	Basic insulation, according to IEC 61010-1 CAT III PD2

Note: ¹⁾ Inside device enclosure providing protection IP5x.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Typ	Max	Comment
Ambient operating temperature	T_A	°C	-40		105	¹⁾
Ambient storage temperature	$T_{A\ st}$	°C	-55		105	
Mass	m	g		9		

Note: ¹⁾ The working conditions have direct impact on the temperature of primary conductor. In any cases, the temperature of conductor must be below 110 °C according to absolute maximum ratings in page up.

At $T_A = 25^\circ\text{C}$, $U_C = +5\text{ V}$, $N_p = 1$ turn, $R_L = 10\text{ k}\Omega$, internal reference unless otherwise noted (see definition of typ, Min, Max. paragraph in page 6).

Parameter	Symbol	Unit	Min	Typ	Max	Comment
Primary nominal RMS current	I_{PN}	A		75		Apply derating according to Figure 1.
Primary current, measuring range	I_{PM}	A	-180		180	
Primary current, measuring range	I_{PM}	A	-182		182	With $U_C = 4.75\text{ V}$, $T_A = 85^\circ\text{C}$, $R_L = 10\text{ k}\Omega$. For other conditions, see Figure 7.
Number of primary turns	N_p			1,2,3,4,5		
Supply voltage	U_C	V	4.75	5	5.25	
Current consumption	I_C	mA		$15 + \frac{I_p(\text{mA})}{N_s}$	$20 + \frac{I_p(\text{mA})}{N_s}$	$N_s = 966$ turns
Reference voltage @ $I_p = 0\text{ A}$	U_{ref}	V	2.495	2.5	2.505	Internal reference
External reference voltage	U_{Eref}	V	0		4	
Output voltage	U_{out}	V	$U_{ref} - 1.125$		$U_{ref} + 1.125$	@ I_{PM}
Output voltage @ $I_p = 0\text{ A}$	U_{out}	V		U_{ref}		
Electrical offset voltage	U_{OE}	mV	-0.725		0.725	100 % tested $U_{out} - U_{ref}$
Electrical offset current referred to primary	I_{OE}	mA	-116		116	100 % tested
Temperature coefficient of U_{ref}	TCU_{ref}	ppm/K	-50	± 5	50	Internal reference
Temperature coefficient of U_{out} @ $I_p = 0\text{ A}$	TCU_{out}	ppm/K	-4		4	ppm/K of 2.5 V $-40^\circ\text{C} \dots 105^\circ\text{C}$ (at ± 6 Sigma)
Nominal sensitivity	S_N	mV/A		6.25		$468.5\text{ mV}/I_{PN}$
Sensitivity error	ε_S	%	-0.7		0.7	100 % tested
Temperature coefficient of S	TCS	ppm/K	-40		40	$-40^\circ\text{C} \dots 105^\circ\text{C}$
Linearity error	ε_L	% of I_{PN}	-0.1		0.1	
Magnetic offset current ($10 \times I_{PN}$) referred to primary	I_{OM}	A	-0.1		0.1	
RMS noise current (spectral density) 100 Hz ... 100 kHz referred to primary	I_{no}	$\mu\text{A}/\text{Hz}^{1/2}$		20		$R_L = 1\text{ k}\Omega$
Peak-peak output ripple at oscillator frequency $f = 450\text{ kHz}$ (typ.)	-	mV			10	$R_L = 1\text{ k}\Omega$
Delay time to 10 % to the final output value for I_{PN} step	t_{D10}	μs			0.3	$R_L = 1\text{ k}\Omega$, $di/dt = 68\text{ A}/\mu\text{s}$
Delay time to 90 % to the final output value for I_{PN} step	t_{D90}	μs			0.3	$R_L = 1\text{ k}\Omega$, $di/dt = 68\text{ A}/\mu\text{s}$
Frequency bandwidth ($\pm 1\text{ dB}$)	BW	kHz	200			$R_L = 1\text{ k}\Omega$
Frequency bandwidth ($\pm 3\text{ dB}$)	BW	kHz	300			$R_L = 1\text{ k}\Omega$
Total error	ε_{tot}	% of I_{PN}	-1.2		1.2	
Total error @ $T_A = 105^\circ\text{C}$	ε_{tot}	% of I_{PN}	-1.6		1.6	
Error	ε	% of I_{PN}	-1		1	
Error @ $T_A = 105^\circ\text{C}$	ε	% of I_{PN}	-1.4		1.4	

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.

For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of the product.

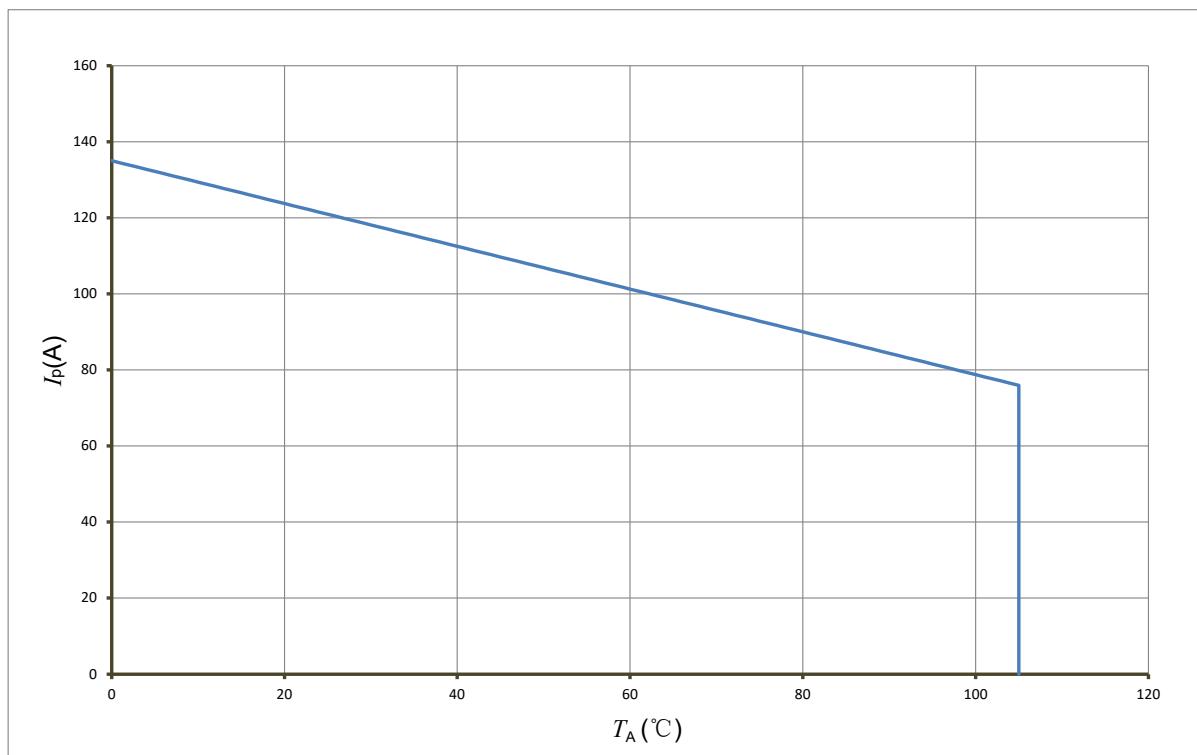

Maximum continuous DC primary current

Figure 1: I_p vs T_A for CKSR 75-NP/SP1

The maximum continuous DC primary current plot shows the boundary of the area for which all the following conditions are true:

- $I_p < I_{pM}$
- Junction temperature $T_j < 125$ °C
- Primary conductor temperature < 110 °C
- Resistor power dissipation < 0.5 × rated power

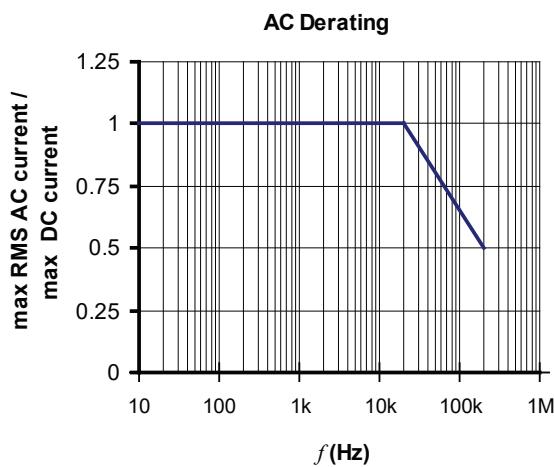

Frequency derating

Figure 2: Maximum RMS AC primary current / maximum DC primary current vs frequency

Terms and definitions

Ampere-turns and amperes

The transducer is sensitive to the primary current linkage Θ_p (also called ampere-turns).

$$\Theta_p = N_p \cdot I_p$$

Where N_p is the number of primary turn (depending on the connection of the primary jumpers).

Caution: As most applications will use the transducer with only one single primary turn ($N_p = 1$), much of this datasheet is written in terms of primary current instead of current linkages. However, the ampere-turns (A) unit is used to emphasize that current linkages are intended and applicable.

Transducer simplified model

The static model of the transducer at temperature T_A is:

$$U_{out} = S \cdot \Theta_p + \varepsilon$$

In which $\varepsilon =$

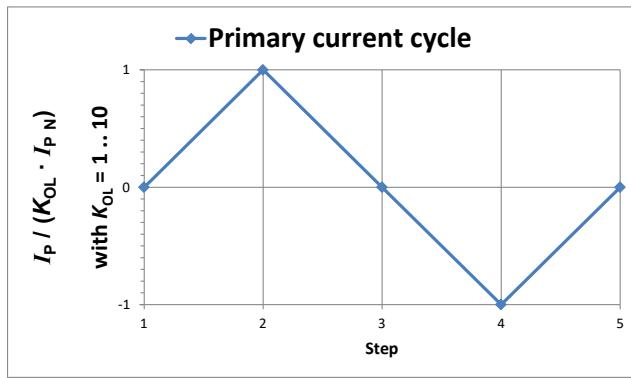
$$U_{OE} + U_{OT}(T_A) + \varepsilon_s \cdot \Theta_p \cdot S + \varepsilon_L(\Theta_{p_{max}}) \cdot \Theta_{p_{max}} \cdot S + TCS \cdot (T_A - 25) \cdot \Theta_p \cdot S$$

With:	$\Theta_p = N_p I_p$:the input ampere-turns (At)
		Please read above warning.
	$\Theta_{p_{max}}$:the maxi input ampere-turns that have been applied to the transducer (At)
	U_{out}	:the secondary voltage (V)
	T_A	:the ambient temperature (°C)
	U_{OE}	:the electrical offset voltage (V)
	$U_{OT}(T_A)$:the temperature variation of U_O at temperature T_A (V)
	S	:the sensitivity of the transducer (V/At)
	ε_s	:the sensitivity error
	$\varepsilon_L(\Theta_{p_{max}})$:the linearity error for $\Theta_{p_{max}}$

This model is valid for primary ampere-turns Θ_p between $-\Theta_{p_{max}}$ and $+\Theta_{p_{max}}$ only.

This is the absolute maximum error. As all errors are independent, a more realistic way to calculate the error would be to use the following formula:

$$\varepsilon = \sqrt{\sum_{i=1}^N \varepsilon_i^2}$$


Sensitivity and linearity

To measure sensitivity and linearity, the primary current (DC) is cycled from 0 to I_p , then to $-I_p$ and back to 0 (equally spaced $I_p/10$ steps). The sensitivity S is defined as the slope of the linear regression line for a cycle between $\pm I_{p_N}$.

The linearity error ε_L is the maximum positive or negative difference between the measured points and the linear regression line, expressed in % of I_{p_N} .

Magnetic offset referred to primary

The magnetic offset current I_{OM} is the consequence of a current on the primary side ("memory effect" of the transducer's ferromagnetic parts). It is measured using the following primary current cycle. I_{OM} depends on the current value $I_P \geq I_{PN}$.

K_{OL} : Overload factor

Figure 3: Current cycle used to measure magnetic and electrical offset (transducer supplied)

$$I_{OM} = \frac{I_{P(3)} - I_{P(5)}}{2}$$

Electrical offset referred to primary

Using the current cycle shown in figure 3, the electrical offset current I_{OE} is the residual output referred to primary when the input current is zero.

$$I_{OE} = \frac{I_{P(3)} + I_{P(5)}}{2}$$

The temperature variation I_{OT} of the electrical offset current I_{OE} is the variation of the electrical offset from 25 °C to the considered temperature.

$$I_{OT}(T) = I_{OE}(T) - I_{OE}(25 \text{ }^{\circ}\text{C})$$

Note: the transducer has to be demagnetized prior to the application of the current cycle (for example with a demagnetization tunnel).

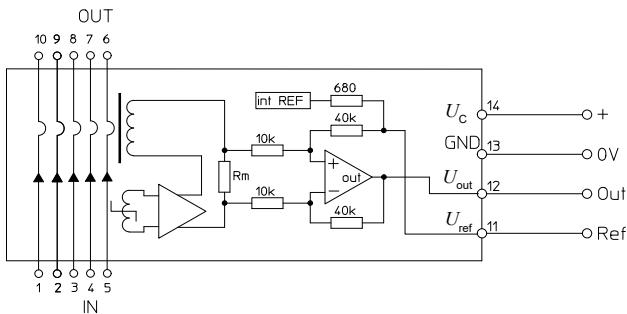


Figure 4: Test connection

Delay time

The delay time t_{D10} @ 10 % and the delay time t_{D90} @ 90 % with respect to the primary are shown in the next figure. Both slightly depend on the primary current di/dt . They are measured at nominal current.

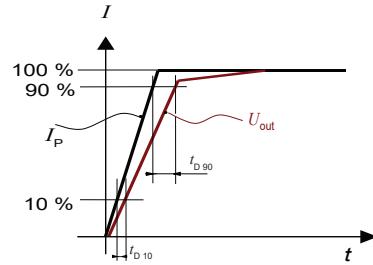


Figure 5: t_{D10} (delay time @ 10 %) and t_{D90} (delay time @ 90 %).

Total error referred to primary

The total error ε_{tot} is the error at $\pm I_{PN}$ relative to the rated value I_{PN} .

It includes all errors mentioned above

- the electrical offset I_{OE}
- the magnetic offset I_{OM}
- the sensitivity error ε_s
- the linearity error ε_L (to I_{PN}).

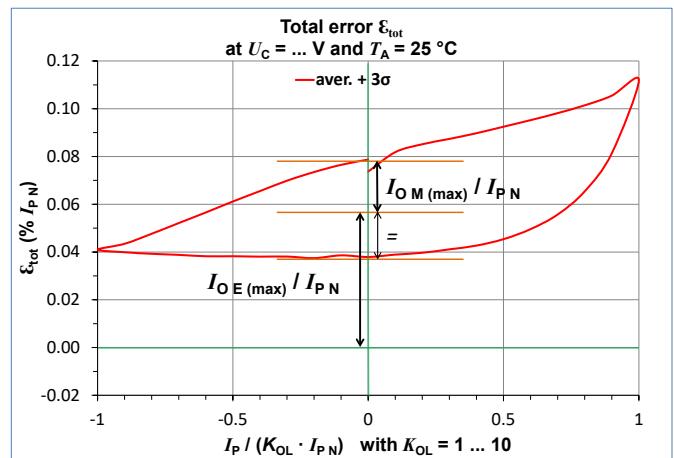


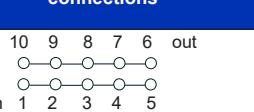
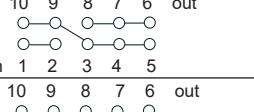
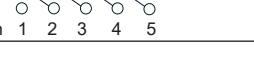
Figure 6: Total error ε_{tot}

Filtering and decoupling

Supply voltage U_c

The fluxgate oscillator draws current pulses of up to 30 mA at a rate of ca. 900 kHz. Significant 900 kHz voltage ripple on $1 \mu\text{F}$.

U_c can indicate a power supply with high impedance. At these frequencies the power supply rejection ratio is low, and the ripple may appear on the transducer output U_{out} and reference U_{ref} . The transducer has internal decoupling capacitors, but in the case of a power supply with high impedance, it is advised to provide local decoupling (100 nF or more, located close to the transducer).




Output U_{out}

The output U_{out} has a very low output impedance of typically 2 Ohms; it can drive 100 pF directly. Adding series $R_f = 100$ Ohms allows much larger capacitive loads. Empirical evaluation may be necessary to obtain optimum results. The minimum load resistance on U_{out} is 1 kOhm.

Total Primary Resistance

The primary resistance is 0.72 mΩ per conductor.

In the following table, examples of primary resistance according to the number of primary turns.

Number of primary turns	Primary resistance R_p [mΩ]	Recommended connections
1	0.144	10 9 8 7 6 out in 1 2 3 4 5
2	0.6	10 9 8 7 6 out in 1 2 3 4 5
5	3.6	10 9 8 7 6 out in 1 2 3 4 5

Measurement range

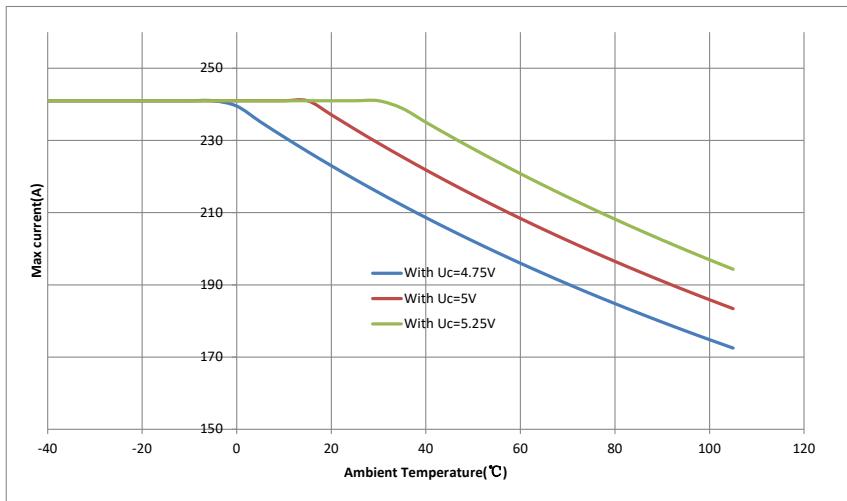
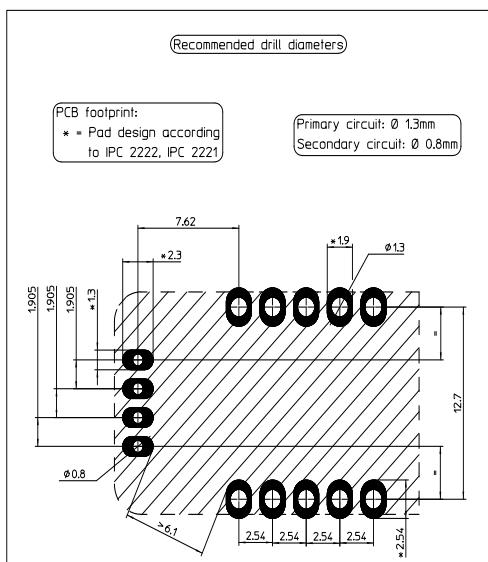


Figure 7: The measurement range vs. temperature

External reference voltage

If the Ref pin of the transducer is not used it could be either left unconnected or filtered according to the previous paragraph "Reference U_{ref} ".

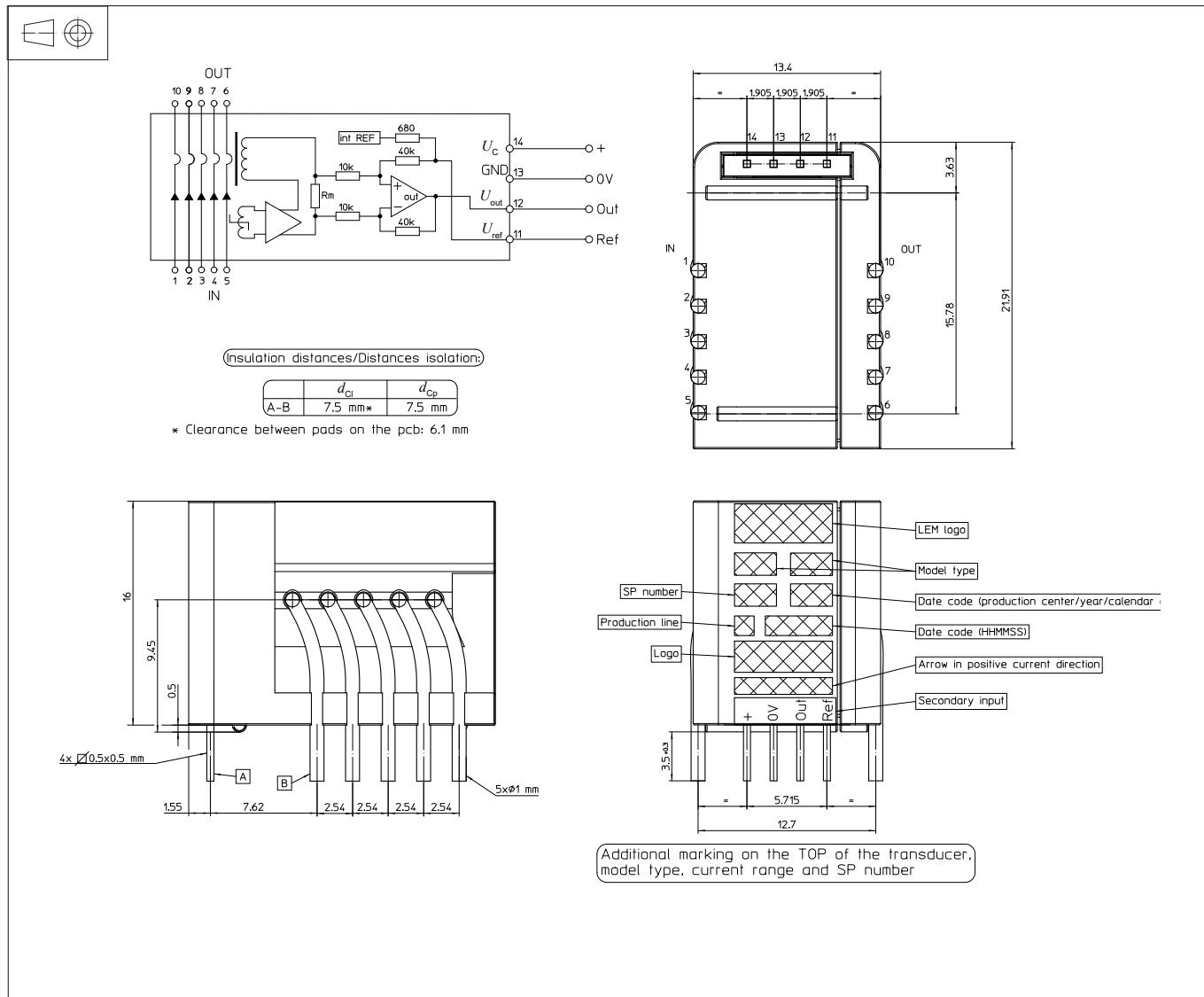
The Ref pin has two modes Ref IN and Ref OUT:


- In the Ref OUT mode the 2.5 V internal precision reference is used by the transducer as the reference point for bipolar measurements; this internal reference is connected to the Ref pin of the transducer through a 680 Ohms resistor. It tolerates sink or source currents up to ± 5 mA, but the 680 Ohms resistor prevents this current to exceed these limits.
- In the Ref IN mode, an external reference voltage is connected to the Ref pin; this voltage is specified in the range 0 to 4 V and is directly used by the transducer as the reference point for measurements.

The external reference voltage U_{ref} must be able:

- either to source a typical current of $\frac{U_{ref} - 2.5}{680}$, the maximum value will be 2.2 mA typ. when $U_{ref} = 4$ V.

- or to sink a typical current of $\frac{2.5 - U_{ref}}{680}$, the maximum value will be 3.68 mA typ. when $U_{ref} = 0$ V.


PCB footprint

Assembly on PCB

- Recommended PCB hole diameter
1.3 mm for primary pin
0.8 mm for secondary pin
- Maximum PCB thickness
2.4 mm
- Wave soldering profile
maximum 260 °C for 10 s
No clean process only

Dimensions (in mm, general linear tolerance ± 0.25 mm)

IMPORTANT NOTICE

The information in this document is considered accurate and reliable. However, LEM International SA and any company directly or indirectly controlled by LEM Holding SA ("LEM") do not provide any guarantee or warranty, expressed or implied, regarding the accuracy or completeness of this information and are not liable for any consequences resulting from its use. LEM shall not be responsible for any indirect, incidental, punitive, special, or consequential damages (including, but not limited to, lost profits, lost savings, business interruption, costs related to the removal or replacement of products, or rework charges) regardless of whether such damages arise from tort (including negligence), warranty, breach of contract, or any other legal theory.

LEM reserves the right to update the information in this document, including specifications and product descriptions, at any time without prior notice. Information in this document replaces any previous versions of this document. No license to any intellectual property is granted by LEM through this document, either explicitly or implicitly. Any information and product described herein is subject to export control regulations.

LEM products may possess either unidentified or documented vulnerabilities. It is the sole responsibility of the purchaser to design and operate their applications and products in a manner that mitigates the impact of these vulnerabilities. LEM disclaims any liability for such vulnerabilities. Customers must select products with security features that best comply with applicable rules, regulations, and standards for their intended use. The purchaser is responsible for making final design decisions regarding its products and for ensuring compliance with all legal, regulatory, and security-related requirements, irrespective of any information or support provided by LEM.

LEM products are not intended, authorized, or warranted for use in life support, life-critical, or safety-critical systems or equipment, nor in applications where failure or malfunction of an LEM product could result in personal injury, death, or significant property or environmental damage. LEM and its suppliers do not assume liability for the inclusion and/or use of LEM products in such equipment or applications; thus, this inclusion and/or use is at the purchaser's own and sole risk. Unless explicitly stated that a specific LEM product is automotive qualified, it should not be used in automotive applications. LEM does not accept liability for the inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

Applications that are described herein are for illustrative purposes only. LEM makes no representation or warranty that LEM products will be suitable for a particular purpose, a specified use or application. The purchaser is solely responsible for the design and operation of its applications and devices using LEM products, and LEM accepts no liability for any assistance with any application or purchaser product design. It is purchaser's sole responsibility to determine whether the LEM product is suitable and fit for the purchaser's applications and products planned, as well as for the planned application and use of purchaser's third-party customer(s).

Stressing and using LEM products at or above limiting values will cause permanent damage to the LEM product and potentially to any device embedding or operating with LEM product. Limiting values are stress ratings only and operation of the LEM product at or above conditions and limits given in this document is not warranted. Continuous or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the LEM product.

LEM products are sold subject to the general terms and conditions of commercial sale, as published at www.lem.com unless otherwise agreed in a specific written agreement. LEM hereby expressly rejects the purchaser's general terms and conditions for purchasing LEM products by purchaser. Any terms and conditions contained in any document issued by the purchaser either before or after issuance of any document by LEM containing or referring to the general terms and conditions of sale are explicitly rejected and disregarded by LEM, and the document issued by the purchaser is wholly inapplicable to any sale or licensing made by LEM and is not binding in any way on LEM.

© 2025 LEM INTERNATIONAL SA – All rights reserved