

AUTOMOTIVE CURRENT TRANSDUCER

HAH3DR 700-S00

Introduction

The HAH3DR family, a tri-phase transducer is for the electronic measurement of DC, AC or pulsed currents in high power automotive applications with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH3DR family gives you the choice of having different current measuring ranges in the same housing (from ± 100 A up to ± 900 A).

Features

- Open Loop transducer using the Hall effect
- PCB mounting
- Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range up to ± 700 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature $T^\circ < + 150^\circ\text{C}$
- Operating temperature range: $-40^\circ\text{C} < T^\circ < + 125^\circ\text{C}$
- Output voltage: full ratiometric (in sensitivity and offset).

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- Wide frequency bandwidth
- No insertion losses
- Very fast response time.

Automotive applications

- Starter Generators
- Inverters
- HEV application
- EV application
- DC / DC converter.

Principle of HAH3DR Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density \mathbf{B} , contributing to the rise of the Hall voltage, is generated by the primary current I_p to be measured.

The current to be measured I_p is supplied by a current source i.e. battery or generator (Fig. 1).

Within the linear region of the hysteresis cycle, \mathbf{B} is proportional to:

$$\mathbf{B} (I_p) = \text{constant (a)} \times I_p$$

The Hall voltage is thus expressed by:

$$V_H = (R_H/d) \times I \times \text{constant (a)} \times I_p$$

Except for I_p , all terms of this equation are constant. Therefore:

$$V_H = \text{constant (b)} \times I_p$$

The measurement signal V_H amplified to supply the user output voltage or current.

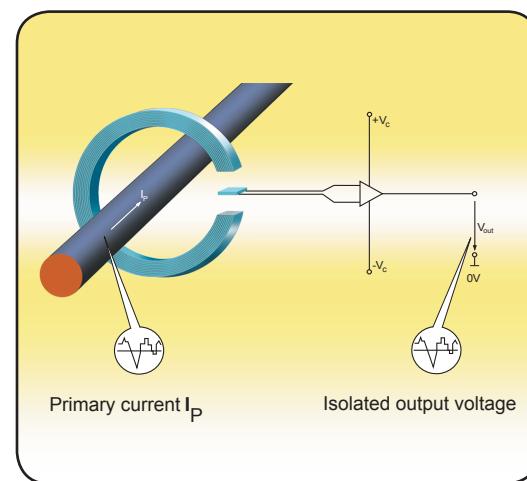
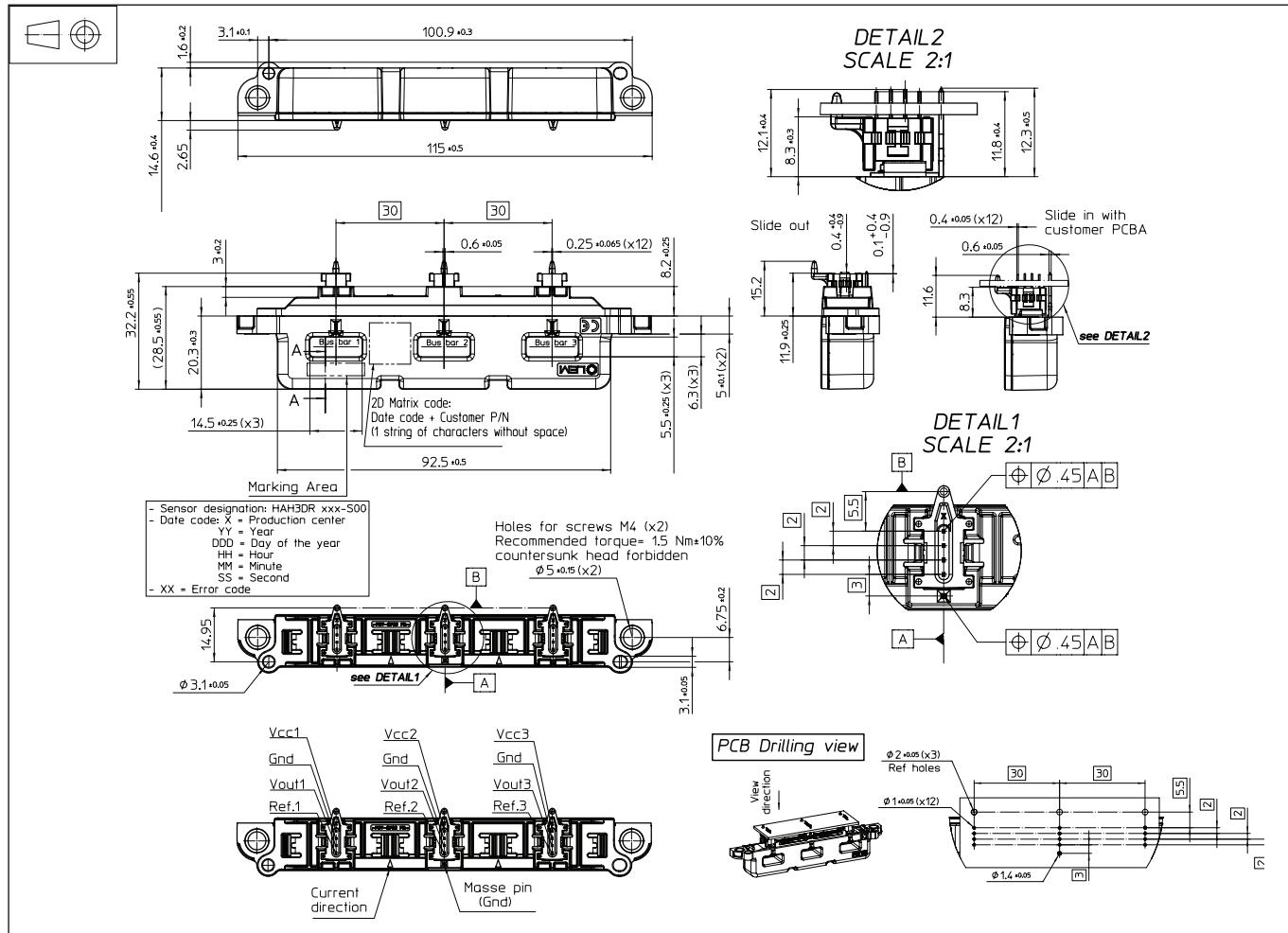
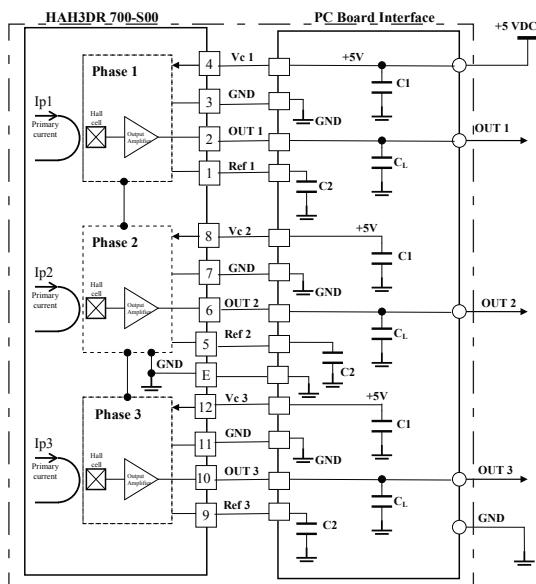



Fig. 1: Principle of the open loop transducer

HAH3DR 700-S00

Dimensions HAH3DR family (in mm)


Bill of materials

- Plastic case PBT GF 30 % (UL 94 V0)
- Magnetic core FeSi wound core
- Pins Copper alloy tin plated (lead free)
- Mass 74 g ± 5 %

R_L >10 kΩ optional resistor for signal line diagnostic
C_L 4 nF < C_L < 18 nF EMC protection
 Nominal value 4.7 nF
 (C_L is an obligation to stabilize and to avoid the undulation of the output signal)

Capacitor of V_{ref} /GND 1 nF < C₂ < 47 nF
 Capacitor of V_c /GND 47 nF < C₁ < 1 µF

Electronic schematic

HAH3DR 700-S00

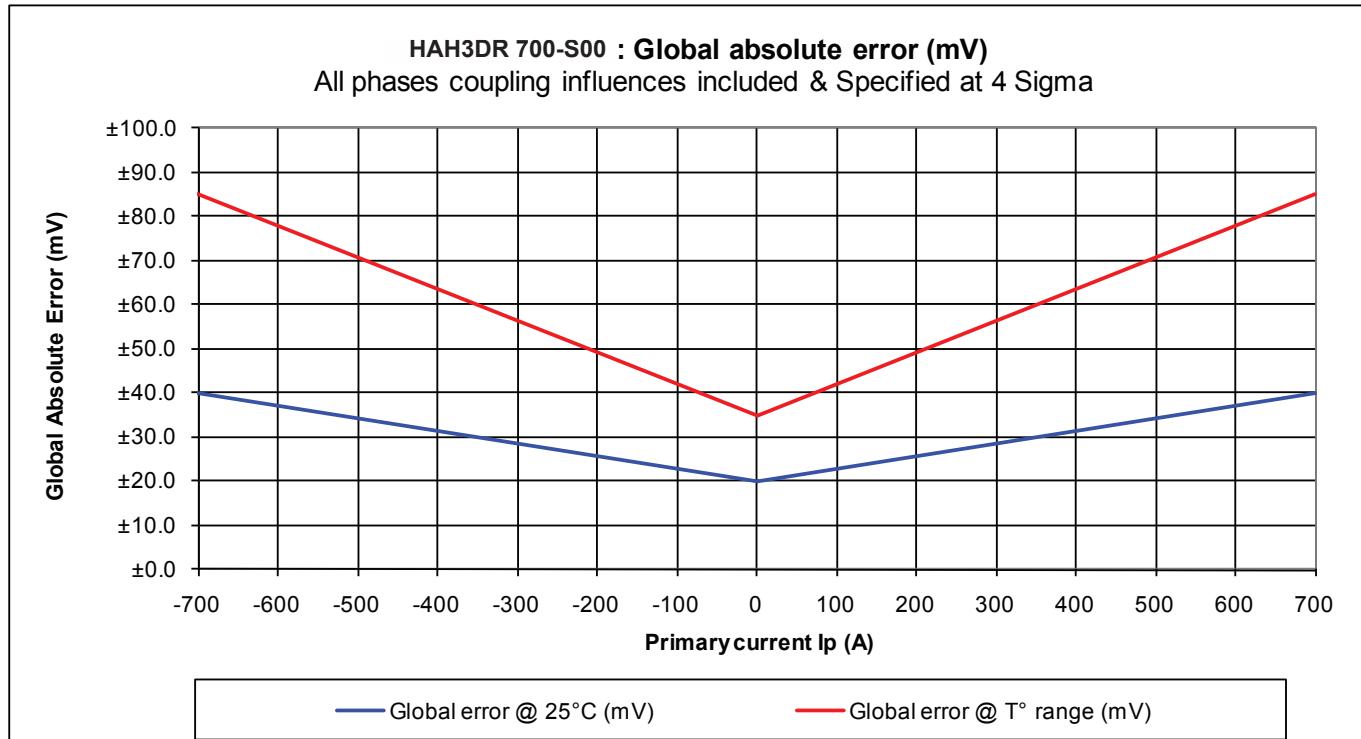
Absolute maximum ratings

Parameter	Symbol	Unit	Specification			Conditions
			Min	Typ	Max	
Electrical Data						
Max primary current peak	$I_{P_{\max}}$	A			1)	
Supply continuous over voltage	V_C	V			8	Not operating
Output voltage min	V_{sz}	V			6.5	Exceeding this voltage may temporarily reconfigure the circuit until next power-on
Output voltage max			4.8			@ $V_C = 5$ V, $T_A = 25^\circ C$
Maximum reverse polarity current ²⁾		mA	-80		80	
Continuous output current	I_{OUT}	mA	-1		1	$R_L = 10$ kΩ
Rms voltage for AC isolation test	V_d	kV			2.5	50 Hz, 1 min, IEC 60664 part1
Isolation resistance	R_{IS}	MΩ	500			500 V DC- ISO 16750
Electrostatic discharge voltage (HBM)	V_{ESD}	kV			2	JESD22-A114-B class 2
Ambient storage temperature	T_s	°C	-50		125	
Clearance distance	d_{CI}	mm	3.78			
Creepage distance	d_{Cp}	mm	4.78			

Operating characteristics

Parameter	Symbol	Unit	Specification			Conditions
			Min	Typ	Max	
Electrical Data						
Primary current	I_p	A	-700		700	
Supply voltage ¹⁾	V_C	V	4.75	5.00	5.25	
Output voltage (Analog) ³⁾	V_{OUT}	V	$V_{OUT} = (V_C/5) \times (2.5 + G \times I_p)$			@ V_C
Sensitivity ^{3) 4)}	G	mV/A		2.86		@ $V_C = 5$ V
Current consumption (for 3 phases) ¹⁾	I_c	mA		44	50	@ $V_C = 5$ V, @ $-40^\circ C < T_A < 125^\circ C$
Load resistance	R_L	kΩ	10			
Output internal resistance	R_{OUT}	Ω			10	DC to 1 kHz
Capacitive loading	C_L	nF	4	4.7	18	
Ambient operating temperature	T_A	°C	-40		125	
Output drift versus power supply	$V_{OUT\ PS}$	%		0.5		
Performance Data (Phases Coupling influences included) @ 4 Sigma						
Sensitivity error ¹⁾	ε_G	%		± 0.5		@ $T_A = 25^\circ C$
				± 1		@ $T_A = 25^\circ C$, after T° cycles
Electrical offset voltage ¹⁾	V_{OE}	mV		± 4		@ $T_A = 25^\circ C$, @ $V_C = 5$ V
Magnetic offset current ¹⁾	V_{OM}		-7.5		7.5	@ $T_A = 25^\circ C$, @ $V_C = 5$ V, after $\pm I_p$
Global offset voltage ¹⁾	V_O		-20.0		20.0	@ $T_A = 25^\circ C$, @ $V_C = 5$ V, Hysteresis included
Average temperature coefficient of V_{OE}	$TCV_{OE\ AV}$	mV/°C	-0.15		0.15	@ $-40^\circ C < T^\circ < 125^\circ C$
Average temperature coefficient of G	TCG_{AV}	%/°C	-0.040	± 0.01	0.040	@ $-40^\circ C < T^\circ < 125^\circ C$
Linearity error ¹⁾	ε_L	%	-1		1	@ $V_C = 5$ V @ $T_A = 25^\circ C$, @ $I = I_p$
Response time to 90 % of I_{PN} step	t_r	μs		4	6	@ $di/dt = 100$ A/μs
Frequency bandwidth ⁴⁾	BW	kHz	40			@ -3 dB
Phase delay		°	-4		0	@ DC to 1 kHz
Output voltage noise peak-peak	$V_{no\ pp}$	mV			20	DC to 1MHz

Notes: ¹⁾ The parameter with ¹⁾ will be checked 100% during the calibration phase


¹⁾ Busbar temperature must be below 150°C

²⁾ Transducer not protected against reverse polarity

³⁾ The output voltage V_{OUT} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage V_C relative to the following formula:

$$I_p = \left(V_{OUT} - \frac{V_C}{2} \right) \times \frac{1}{G} \times \frac{5}{V_C} \quad \text{with } G \text{ in (V/A)}$$

⁴⁾ Tested only with small signal only to avoid excessive heating of the magnetic core.

HAH3DR 700-S00

Global absolute error specified at 4 Sigma

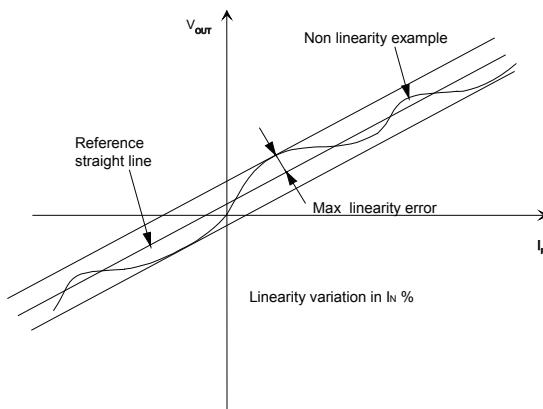
I_p (A)	Globale error @ 25°C (mV)	Globale error @ T° range (mV)
-700	±40.0	±85.0
0	±20.0	±35.0
700	±40.0	±85.0

PERFORMANCES PARAMETERS DEFINITIONS

Output noise voltage:

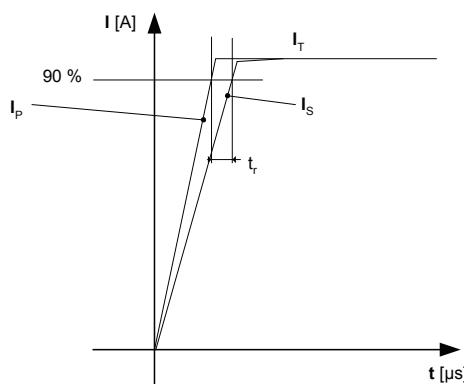
The output voltage noise is the result of the noise floor of the Hall elements and the linear I_C amplifier gain.

Magnetic offset:


The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{P_{max}}$.

Linearity:

The maximum positive or negative discrepancy with a reference straight line $V_{out} = f(I_p)$.


Unit: linearity (%) expressed with full scale of $I_{P_{max}}$.

Linearity is measured on cycle + I_p , 0, - I_p , 0, + I_p without magnetic offset (average values used).

Response time (delay time) t_r :

The time between the primary current signal and the output signal reach at 90 % of its final value.

Typical:

Theoretical value or usual accuracy recorded during the Design Validation tests.

Sensitivity:

The Transducer's sensitivity G is the slope of the straight line

$V_{out} = f(I_p)$, it must establish the relation:

$$V_{out}(I_p) = V_c/5 (G \times I_p + 2.5) (*)$$

(*) For all symetrics transducers.

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25°C.

The offset variation I_{OT} is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE \ max} - I_{OE \ min}$$

The Offset drift TCI_{OEAV} is the I_{OT} value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25°C.

The sensitivity variation G_T is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

$$G_T = (Sensitivity \ max - Sensitivity \ min) / Sensitivity \ at \ 25^\circ C$$

The sensitivity drift TCG_{AV} is the G_T value divided by the temperature range.

Offset voltage @ $I_p = 0$ A:

Is the output voltage when the primary current is null. The ideal value of V_o is $V_c/2$ at $V_c = 5$ V. So, the difference of $V_o - V_c/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis.

Environmental test specifications

See PV test.

IMPORTANT NOTICE

The information in this document is considered accurate and reliable. However, LEM International SA and any company directly or indirectly controlled by LEM Holding SA ("LEM") do not provide any guarantee or warranty, expressed or implied, regarding the accuracy or completeness of this information and are not liable for any consequences resulting from its use. LEM shall not be responsible for any indirect, incidental, punitive, special, or consequential damages (including, but not limited to, lost profits, lost savings, business interruption, costs related to the removal or replacement of products, or rework charges) regardless of whether such damages arise from tort (including negligence), warranty, breach of contract, or any other legal theory.

LEM reserves the right to update the information in this document, including specifications and product descriptions, at any time without prior notice. Information in this document replaces any previous versions of this document. No license to any intellectual property is granted by LEM through this document, either explicitly or implicitly. Any information and product described herein is subject to export control regulations.

LEM products may possess either unidentified or documented vulnerabilities. It is the sole responsibility of the purchaser to design and operate their applications and products in a manner that mitigates the impact of these vulnerabilities. LEM disclaims any liability for such vulnerabilities. Customers must select products with security features that best comply with applicable rules, regulations, and standards for their intended use. The purchaser is responsible for making final design decisions regarding its products and for ensuring compliance with all legal, regulatory, and security-related requirements, irrespective of any information or support provided by LEM.

LEM products are not intended, authorized, or warranted for use in life support, life-critical, or safety-critical systems or equipment, nor in applications where failure or malfunction of an LEM product could result in personal injury, death, or significant property or environmental damage. LEM and its suppliers do not assume liability for the inclusion and/or use of LEM products in such equipment or applications; thus, this inclusion and/or use is at the purchaser's own and sole risk. Unless explicitly stated that a specific LEM product is automotive qualified, it should not be used in automotive applications. LEM does not accept liability for the inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

Applications that are described herein are for illustrative purposes only. LEM makes no representation or warranty that LEM products will be suitable for a particular purpose, a specified use or application. The purchaser is solely responsible for the design and operation of its applications and devices using LEM products, and LEM accepts no liability for any assistance with any application or purchaser product design. It is purchaser's sole responsibility to determine whether the LEM product is suitable and fit for the purchaser's applications and products planned, as well as for the planned application and use of purchaser's third-party customer(s).

Stressing and using LEM products at or above limiting values will cause permanent damage to the LEM product and potentially to any device embedding or operating with LEM product. Limiting values are stress ratings only and operation of the LEM product at or above conditions and limits given in this document is not warranted. Continuous or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the LEM product.

LEM products are sold subject to the general terms and conditions of commercial sale, as published at www.lem.com unless otherwise agreed in a specific written agreement. LEM hereby expressly rejects the purchaser's general terms and conditions for purchasing LEM products by purchaser. Any terms and conditions contained in any document issued by the purchaser either before or after issuance of any document by LEM containing or referring to the general terms and conditions of sale are explicitly rejected and disregarded by LEM, and the document issued by the purchaser is wholly inapplicable to any sale or licensing made by LEM and is not binding in any way on LEM.

© 2025 LEM INTERNATIONAL SA – All rights reserved