AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY

HAH3DR 900-S0D

Introduction

The HAH3DR 900-S0D is a tri-phase transducer for DC, AC, or pulsed currents measurement in high power and low voltage automotive applications. It offers a galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Features

- Open Loop transducer using the Hall effect sensor
- Low voltage application
- Unipolar +5 V DC power supply
- Primary current measuring range up to ±900 A
- Maximum RMS primary admissible current: defined by the busbar, the magnetic core or ASIC to have \( T < +150 \) °C
- Operating temperature range: \(-40 \) °C < \( T < +125 \) °C
- Output voltage: fully ratio-metric (in sensitivity and offset).

Special features

- Tri-phase transducer
- Not waterproof
- Gold plated
- Compressor limiters.

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- High frequency bandwidth
- No insertion losses
- Very fast delay time.

Automotive applications

- Starter Generators
- Inverters
- HEV applications
- EV applications
- DC / DC converter.

Principle of HAH3DR S0D family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density \( B \), contributing to the rise of the Hall voltage, is generated by the primary current \( I_p \) to be measured.

The current to be measured \( I_p \) is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, \( B \) is proportional to:

\[
B(I_p) = a \times I_p
\]

The Hall voltage is thus expressed by:

\[
U_H = (c_H / d) \times I_H \times a \times I_p
\]

Except for \( I_p \), all terms of this equation are constant.

Therefore:

\[
U_H = b \times I_p
\]

\( a \) constant

\( b \) constant

\( c_H \) Hall coefficient

\( d \) thickness of the Hall plate

\( I_H \) current across the Hall plates

The measurement signal \( U_H \) amplified to supply the user output voltage or current.

Fig. 1: Principle of the open loop transducer.
Dimensions HAH3DR 900-S0D (in mm)

Mechanical characteristics
- Plastic case: >PBT-GF30< (Black)
- Magnetic core: FeSi alloy
- Pins: Copper alloy gold plated
- Mass: 113 g ±5 %.

Mounting recommendation
- Mating connector type: Hirose Socket GT8E-5S...
- Assembly torque: 1.5 Nm ± 10 %
- Soldering type: N/A.

Remarks (To be updated)
- $R_p = \frac{U_{\text{out}} - U_{\text{in}}}{I_p}$ with $I_p$ in (V/A)
- $U_{\text{out}} > U_{\text{in}}$ when $I_p$ flows in the positive direction (see arrow on drawing).

System architecture (example)

[Diagram of system architecture]
## Absolute ratings (not operating)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Specification</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum supply voltage</td>
<td>$U_{C_{\text{max}}}$</td>
<td>V</td>
<td>$-0.5$</td>
<td>Continuous, not operating</td>
</tr>
<tr>
<td>Output voltage low</td>
<td>$U_{\text{out,LL}}$</td>
<td>V</td>
<td>$0.2$</td>
<td>Exceeding this voltage may temporarily reconfigure the circuit until the next power-on</td>
</tr>
<tr>
<td>Output voltage high</td>
<td>$U_{\text{out,HH}}$</td>
<td>V</td>
<td>$4.8$</td>
<td>$U_C = 5 \text{ V, } T_A = 25 \degree \text{ C}$</td>
</tr>
<tr>
<td>Ambient storage temperature</td>
<td>$T_S$</td>
<td>°C</td>
<td>$-50$</td>
<td>$125$</td>
</tr>
<tr>
<td>Electrostatic discharge voltage (HBM)</td>
<td>$U_{\text{Elec,HBM}}$</td>
<td>kV</td>
<td>$2$</td>
<td>JESD22-A114-B class 2</td>
</tr>
<tr>
<td>RMS voltage for AC insulation test</td>
<td>$U_{\text{AC}}$</td>
<td>kV</td>
<td>$2.5$</td>
<td>$50 \text{ Hz, 1 min, IEC 60664 part1}$</td>
</tr>
<tr>
<td>Crevage distance</td>
<td>$d_{\text{cc}}$</td>
<td>mm</td>
<td>$5.08$</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td>$d_{\text{c}}$</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>$CTI$</td>
<td>V</td>
<td>PLC3</td>
<td></td>
</tr>
<tr>
<td>Maximum reverse current</td>
<td>$I_{\text{rev}}$</td>
<td>mA</td>
<td>$-80$</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>$R_{\text{ins}}$</td>
<td>MΩ</td>
<td>$500$</td>
<td>$500 \text{ V DC, ISO 16750}$</td>
</tr>
<tr>
<td>Primary nominal peak current</td>
<td>$I_{\text{P N}}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Operating characteristics in nominal range ($I_{\text{P N}}$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Specification</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary current, measuring range</td>
<td>$I_{\text{PM}}$</td>
<td>A</td>
<td>$-900$</td>
<td>$900$</td>
</tr>
<tr>
<td>Primary nominal DC or RMS current</td>
<td>$I_{\text{PN}}$</td>
<td>A</td>
<td>$-900$</td>
<td>$900$</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>$U_{\text{S}}$</td>
<td>V</td>
<td>$4.75$</td>
<td>$5$</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>$T_A$</td>
<td>°C</td>
<td>$-40$</td>
<td>$125$</td>
</tr>
<tr>
<td>Capacitive loading</td>
<td>$C_{\text{C}}$</td>
<td>nF</td>
<td>$2.2$</td>
<td></td>
</tr>
<tr>
<td>Output voltage (Analog)</td>
<td>$U_{\text{out}}$</td>
<td>V</td>
<td>$U_{\text{out}} = \left( \frac{U_{\text{C}}}{5} \times (U_{\text{i}} + S \times I_{\text{P}}) \right) \times U_{\text{C}}$</td>
<td>$U_{\text{C}}$</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>$S$</td>
<td>mV/A</td>
<td>$2.22$</td>
<td>$U_{\text{C}} = 5 \text{ V}$</td>
</tr>
<tr>
<td>Current consumption (for 3 phases)</td>
<td>$I_{\text{i}}$</td>
<td>mA</td>
<td>$45$</td>
<td>$60$</td>
</tr>
<tr>
<td>Load resistance</td>
<td>$R_{\text{L}}$</td>
<td>KΩ</td>
<td>$10$</td>
<td></td>
</tr>
<tr>
<td>Output internal resistance</td>
<td>$R_{\text{int}}$</td>
<td>Ω</td>
<td></td>
<td>$10$ DC to 1 kHz</td>
</tr>
</tbody>
</table>

### Ratiometricity error

- $v_i \%$ = 0.5 @ $T_A = 25 \degree \text{ C}$
- $v_i \% = 0.5, 0 \degree \text{ C} < T_A < 125 \degree \text{ C}$

### Sensitivity error

- $v_s \%$ = ±0.5 @ $T_A = 25 \degree \text{ C}$
- $v_s \% = 0 \degree \text{ C} < T_A < 125 \degree \text{ C}$

### Electrical offset current or voltage

- $U_{\text{off}}$ mV = ±4 @ $T_A = 25 \degree \text{ C, } U_{\text{C}} = 5 \text{ V}$
- $U_{\text{off}}$ mV = ±7.5 @ $T_A = 25 \degree \text{ C, } U_{\text{C}} = 5 \text{ V}$

### Global offset current or voltage

- $U_{\text{off}}$ mV = ±20 @ $T_A = 25 \degree \text{ C, } U_{\text{C}} = 5 \text{ V}$

### Average temperature coefficient of $U_{\text{off}}$

- $TCU_{\text{off}}$ mV/°C = −0.08 @ $-40 \degree \text{ C} < T_A < 125 \degree \text{ C}$

### Average temperature coefficient of $S$

- $TCS$ mV/°C = −0.03 ± 0.01 @ $-40 \degree \text{ C} < T_A < 125 \degree \text{ C}$

### Linearity error

- $v_i \% I_{\text{i}}$ = $1$ @ $U_{\text{C}} = 5 \text{ V, } T_A = 125 \degree \text{ C, } I = I_{\text{PN}}$

### Frequency bandwidth

- $BW$ kHz = 40 @ $-3 \text{ dB}$

### Peak-to-peak noise voltage

- $U_{\text{no,pp}}$ mV = 15 @ DC to 1 MHz

### Phase shift

- $\Delta \phi$ ° = 0 @ DC to 1 KHz

### Notes:

1) The output voltage $U_{\text{out}}$ is fully ratiometric. The offset and sensitivity are dependent on the supply voltage $U_{\text{C}}$ relative to the following formula:

$$I_P = \left[ 5 \frac{U_{\text{C}}}{U_{\text{C}} + U_{\text{out}} - U_D} \right] \frac{1}{S}$$

with $S$ in (V/A)

2) Primary current frequencies must be limited in order to avoid excessive heating of the busbar, magnetic core and the ASIC (see feature paragraph in page 1/6).

3) Transducer is not protected against reverse polarity.
Total error

**HAH3DR 900-S0D: Total error $\varepsilon_{\text{tot}}$**

All phases coupling included and specified @ 3 sigma

<table>
<thead>
<tr>
<th>$I_p$ (A)</th>
<th>$T_A = 25 , ^\circ\text{C}$, $U_C = 5 , \text{V}$</th>
<th>$-40 , ^\circ\text{C} \leq T_A \leq 125 , ^\circ\text{C}$, $U_C = 5 , \text{V}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>$\pm 50 , \text{mV}$ $\pm 22.5 , \text{A}$ $\pm 2.5 %$</td>
<td>$\pm 75 , \text{mV}$ $\pm 33.75 , \text{A}$ $\pm 3.75 %$</td>
</tr>
<tr>
<td>0</td>
<td>$\pm 20 , \text{mV}$ $\pm 9 , \text{A}$ $\pm 1 %$</td>
<td>$\pm 30 , \text{mV}$ $\pm 13.5 , \text{A}$ $\pm 1.5 %$</td>
</tr>
<tr>
<td>$-900$</td>
<td>$\pm 50 , \text{mV}$ $\pm 22.5 , \text{A}$ $\pm 2.5 %$</td>
<td>$\pm 75 , \text{mV}$ $\pm 33.75 , \text{A}$ $\pm 3.75 %$</td>
</tr>
</tbody>
</table>
PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

\[ U_{out} \]

Delay time \( t_{D\ 90} \):

The time between the primary current signal \( I_{P\ N} \) and the output signal reach at 90 % of its final value.

\[ t_{D\ 90} \]

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. “100 % tested”), the LEM definition for such intervals designated with “min” and “max” is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between \(-3\) sigma and \(+3\) sigma. If “typical” values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between \(-\sigma\) and \(+\sigma\) for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It’s defined after a stated excursion of primary current.

Linearity:

The maximum positive or negative discrepancy with a reference straight line \( U_{out} = f(I_p) \). Unit: linearity (%) expressed with full scale of \( I_{P\ N} \).

\[ U_{out} \]

Non linearity example

Reference straight line

Max linearity error

Linearity variation in \( I_{P\ N} \)

Sensitivity:

The transducer’s sensitivity \( S \) is the slope of the straight line \( U_{out} = f(I_p) \), it must establish the relation:

\[ U_{out} = U_C/5 (S \times I_p + U_O) \]

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 °C.

The offset variation \( I_{OE} \) is a maximum variation the offset in the temperature range:

\[ I_{OE} = I_{OE\ max} - I_{OE\ min} \]

The offset drift \( TC_{OE\ AV} \) is the \( I_{OE} \) value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C.

The sensitivity variation \( S_I \) is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

\[ S_I = (Sensitivity\ max - Sensitivity\ min) / Sensitivity\ at\ 25\ °C \]

The sensitivity drift \( TCS_{AV} \) is the \( S_I \) value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ \( I_p = 0\ A \):

The offset voltage is the output voltage when the primary current is zero. The ideal value of \( U_O \) is \( U_C/2 \). So, the difference of \( U_O - U_C/2 \) is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).
Environmental test specifications:

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Electrical tests</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase delay check</td>
<td>LEM Procedure</td>
<td>30 Hz to 100 kHz @ 20 A peak</td>
</tr>
<tr>
<td>Frequency Bandwidth</td>
<td>LEM Procedure</td>
<td>30 Hz to 100kHz @ 20 A peak</td>
</tr>
<tr>
<td>Noise measurement</td>
<td>LEM Procedure</td>
<td>Sweep from DC to 1 MHz</td>
</tr>
<tr>
<td>Delay time d/dt</td>
<td>LEM Procedure</td>
<td>100 A/μs, ( I_{pulse} = 900 ) A</td>
</tr>
<tr>
<td>dv/dt</td>
<td>LEM Procedure</td>
<td>5000 V/μs, ( U = 1000 ) V</td>
</tr>
<tr>
<td>Dielectric Withstand Voltage test</td>
<td>ISO 16750-2 § 4.11</td>
<td>2500 V AC/ 1 min/50 Hz</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>GBT 18488.1-2015</td>
<td>1000 VDC, time = 60 s ( R_{INS} \geq 20 ) MΩ minimum</td>
</tr>
<tr>
<td><strong>Environmental tests</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state ( T ) °C Humidity bias life test</td>
<td>JESD 22-A101 (03.2009)</td>
<td>1000 hours +85 °C/85 % RH ( U_c = 5 ) V , ( I_p = 0 ) A</td>
</tr>
<tr>
<td>Low temperature storage test</td>
<td>ISO 16750-4 § 5.1.1.1 (04.2010)</td>
<td>Storage: –40 °C for 96 h ( U_c ) not connected, ( I_p = 0 ) A</td>
</tr>
<tr>
<td></td>
<td>IEC 60068-2-1 Ad (03.2007)</td>
<td></td>
</tr>
<tr>
<td>High temperature storage test</td>
<td>ISO 16750-4 § 5.1.2.1.1 (04.2010)</td>
<td>Storage: 125 °C for 1000 h ( U_c ) not connected, ( I_p = 0 ) A</td>
</tr>
<tr>
<td></td>
<td>IEC 60068-2-2 Bd (07.2007)</td>
<td></td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>ISO 16750-4 § 5.3.2 (04.2010)</td>
<td>1000 cycles (1000 hours), 30 min @ –40 °C/30mn @ +125 °C ( U_c ) not connected, ( I_p = 0 ) A</td>
</tr>
<tr>
<td></td>
<td>IEC 60068-2-14 Na (01.2009)</td>
<td></td>
</tr>
<tr>
<td>Power Temperature cycle test</td>
<td>ISO 16750-4 § 5.3.1 (04.2010)</td>
<td>30 cycles(240 h), –40 °C - +125 °C ( U_c = 5 ) V , ( I_p = 0 ) A</td>
</tr>
<tr>
<td></td>
<td>IEC 60068-2-14 Na (01.2009)</td>
<td></td>
</tr>
<tr>
<td><strong>Mechanical tests</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Shock</td>
<td>ISO 16750-3 § 4.2.2 (12.2012)</td>
<td>50 g/6 ms Half Sine @ 20 °C 10 shocks of each direction (Total: 60) ( U_c ) not connected, ( I_p = 0 ) A</td>
</tr>
<tr>
<td>Sine Vibration in 25 °C</td>
<td>IEC 60068-2-6</td>
<td>Sine 30-60 m/s², 100 Hz - 440 Hz@ 25 °C 22 hr/axis ( U_c = 5 ) V , ( I_p = 0 ) A</td>
</tr>
<tr>
<td>Name</td>
<td>Standard</td>
<td>Conditions</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>---------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Random Vibration in $T, ^\circ C$</td>
<td>IEC 60068-2-64</td>
<td>$96, m/s^2,, 10, Hz, -, 2000, Hz,, -40, ^\circ C, &lt;, T, ^\circ C, &lt;, +125, ^\circ C$</td>
</tr>
</tbody>
</table>
| Free Fall                                 | ISO 16750-3 § 4.3 (12.2012) | Height = 1 m, Concrete floor  
3 axes, 2 directions by axis, 1 sample by axis                                                                                   |
| **EMC test**                              |                           |                                                                                                                                             |
| Radiated Emission                         | CISPR 25:2016             | 0.15 MHz to 2500 MHz  
Table 9, Class 5                                                                                                                       |
| Bulk Current Injection (BCI)              | ISO 11452-4:2005         | 1 MHz to 400 MHz  
Level: 4 Criteria: A                                                                                                                      |
| Absorber-lined shielded enclosure         | ISO 11452-2:2004         | $F = 400\, MHz\, to\, 1\, GHz;\, Level = 100\, V/m\, (CW,\, AM 80\%);\, F = 0.8\, GHz\, to\, 2\, GHz;\, Level = 70\, V/m\, (CW,\, PM\, PRR = 217\, Hz,\, PD = 0.57\, ms)$ |
| ESD Test                                  | ISO 10605 (07.2008) IEC 61000-4-2 | Contact: ±4, ±6 kV Air: ±8 kV  
$U_{cc}$ not connected                                                                            |