

Current Transducer HAS 500-S/SP59

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

$I_{PN} = 500 \text{ A}$

Electrical data

I_{PN}	Primary nominal RMS current	500	A
I_{PM}	Primary current, measuring range	0 ... ± 1000	A
U_C	Supply voltage ($\pm 5\%$) ¹⁾	± 15	V
I_C	Current consumption	± 15	mA
R_{INS}	Insulation resistance @ 500 V DC	> 1000	M Ω
U_{out}	Output voltage (Analog) @ $\pm I_{PN}$, $R_L = 10 \text{ k}\Omega$, $T_A = 25^\circ\text{C}$	± 4 V	V
R_{out}	Output internal resistance approx	100	Ω
R_L	Load resistance ²⁾	> 1	k Ω

Accuracy - Dynamic performance data

ε	Error @ I_{PN} , $T_A = 25^\circ\text{C}$ (excluding offset)	< ± 1	%
ε_L	Linearity error ³⁾ (0 ... $\pm I_{PN}$)	< ± 1	% of I_{PN}
U_{OE}	Electrical offset voltage, $T_A = 25^\circ\text{C}$	< ± 20	mV
U_{OM}	Magnetic offset voltage @ $I_{PN} = 0$, after an excursion of $1 \times I_{PN}$	< ± 20	mV
TCU_{OE}	Temperature coefficient of U_{OE} $-40^\circ\text{C} \dots +85^\circ\text{C}$	< ± 1	mV/K
	$+85^\circ\text{C} \dots +105^\circ\text{C}$	< ± 1.5	mV/K
TCU_{out}	Temperature coefficient of U_{out} (% of reading)	< ± 0.1	%/K
t_{D90}	Delay time to 90 % of the final output value for I_{PN} step ⁴⁾ < 3		μs
BW	Frequency bandwidth (-3 dB) ⁵⁾	DC ... 50	kHz

General data

T_A	Ambient operating temperature	-40 ... +105	$^\circ\text{C}$
$T_{A\text{st}}$	Ambient storage temperature	-40 ... +105	$^\circ\text{C}$
m	Mass	approx	60 g
Standards	UL	UL 508:2010 ⁶⁾	
	EMC	IEC 61000-6-2:2016	
	Safety	IEC 61800-3:2017 ⁷⁾	
	Environmental	IEC 61010-1:2010	
		IEC 61477-1:2012	
		IEC 61800-2:2012	

Notes: ¹⁾ Operating at $\pm 12 \text{ V} \leq U_C < \pm 15 \text{ V}$ will reduce the measuring range

²⁾ If the customer uses 1 k Ω of the load resistor, the primary current has to be limited as the nominal; To measure the full defined measuring range, the load resistor should be at minimum 10 k Ω

³⁾ Linearity data exclude the electrical offset

⁴⁾ For a $di/dt = 50 \text{ A}/\mu\text{s}$

⁵⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency

⁶⁾ UL conform at $+80^\circ\text{C}$

⁷⁾ Regarding compliance towards IEC 61000-4-3 (IEC 61800-3:2017): variation of the offset between 390 MHz and 400 MHz with a field intensity of 10 [V/m].

Current Transducer HAS 500-S/SP59

Insulation coordination

U_d	RMS voltage for AC insulation test, 50 Hz, 1 min	6.7	kV
U_{Ni}	Impulse withstand voltage 1.2/50 μ s	10.3	kV
		Min	
d_{Cp}	Creepage distance	14.5	mm
d_{Cl}	Clearance	14.3	mm
CTI	Comparative tracking index (group I)	600	

Applications examples

According to IEC 61800-5-1 standard and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field
- Altitude(m) 2000

IEC 61800-5-1	
d_{Cp}, d_{Cl}, U_{Ni}	Nominal voltage
Basic insulation	1500 V
Reinforced insulation	600 V

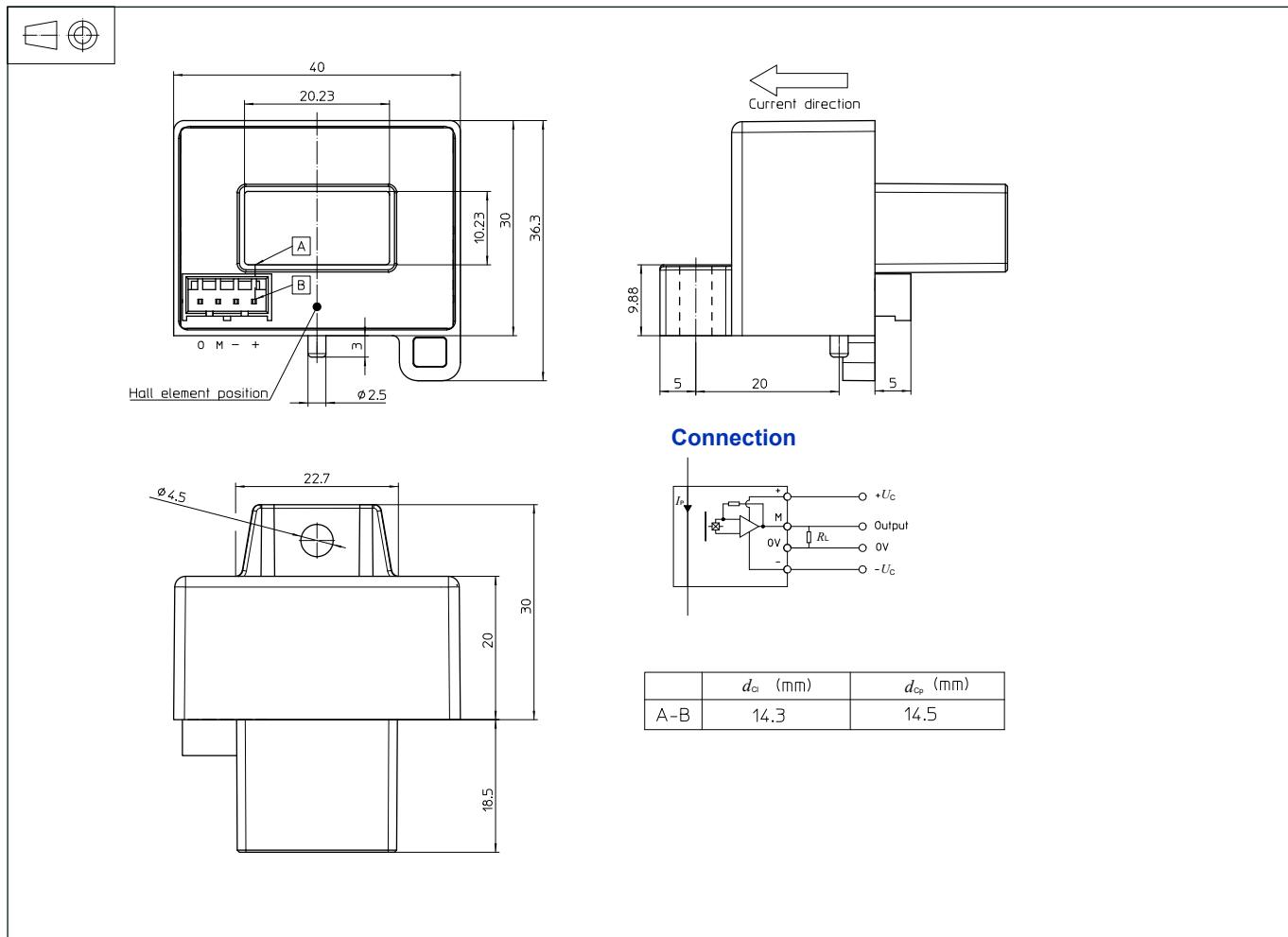
Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61800-5-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).


Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions HAS 500-S/SP59 (in mm)

Mechanical characteristics

- General tolerance ± 0.5 mm
- Transducer fastening 1 hole $\phi 4.5$ mm
- Recommended fastening torque 1 M4 steel screw
- Connection of secondary 0.75 N·m ($\pm 10\%$)
- Connection of secondary Molex 35312-0460

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 105 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: <https://www.lem.com/en/file/3137/download/>.
- Dynamic performances (di/dt and delay time) are best with a single bar completely filling the primary hole.