Current Transducer HOP 500-SB/SP1 For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit. | Electrical data | | | | |--------------------------------|----------------------------------|--------|----| | I_{PN} | Primary nominal RMS current | 500 | Α | | I_{PM} | Primary current, measuring range | ±1000 | Α | | U_{out} | Output voltage (Analog) | ±4 | V | | $R_{\scriptscriptstyle \perp}$ | Load resistance | > 10 | kΩ | | U_{c} | Supply voltage (±5 %) | ±12 15 | V | | I_{C} | Current consumption (max) | 20 | mA | | | | | | # Accuracy - Dynamic performance data Error ¹⁾ @ I_{DNI} T_A = 25 °C, @ ±12 ... 15 V (±5 %) | ε | Error ¹⁾ @ I_{PN} , $T_A = 25 °C$, @ ±12 15 V (±5 %) | ≤ ±2 | | % | |-----------------------------|--|------|------|-----| | $arepsilon_{ t L}$ | Linearity error 1) | ≤ ±1 | | % | | _ | | Тур | Max | | | U_{OE} | Electrical offset voltage @ I_P = 0, T_A = 25 °C | ±10 | ±20 | mV | | U_{OM} | Magnetic offset voltage @ I_P = 0 and specified R_M , | | | | | | after an overload of 3 × I_{PN} | ±10 | ±20 | mV | | $U_{o\scriptscriptstyle T}$ | Temperature variation of $U_{\rm O}$ = -10 °C +70 °C | ±10 | ±25 | mV | | TCU_{out} | Temperature coefficient of $U_{\rm out}$ = -10 °C +70 °C | ±80 | ±150 | mV | | t _{D 90} | Delay time to 90 % of the final output value for $I_{\rm PN}^{-2}$ | step | < 10 | μs | | BW | Frequency bandwidth (-1 dB) | DC | 10 | kHz | | G | eneral data | | |---|-------------------------------|-----------------| | Δ | Ambient operating temperature | -10 + 70 | $T_{\rm Ast}$ Ambient storage temperature $-25 \dots +85$ °C m Mass 590 g Standards EN 50178: 1997 UL 508: 2013 Notes: 1) Excludes the electrical offset # $I_{PN} = 500 \text{ A}$ ### **Features** - Open loop Hall effect transducer - Insulating plastic case recognized according to UL 94-V0. # **Special feature** • Different PCB, case and core. # **Advantages** - Low power consumption - Split core easy for mounting - Through-hole, no insertion losses. # **Applications** - Power supplies for TELECOM (monitoring & measuring) - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Electrical chemistry - Chopper °C • Battery supplied applications. #### **Application domain** Industrial. ²⁾ For a di/dt = 50 A/µs. # **Current Transducer HOP 500-SB/SP1** | Insulation coordination | | | | |-------------------------|---|-------|----| | U_{d} | RMS voltage for AC insulation test, 50 Hz, 1 min | 5 | kV | | U_{Ni}^{u} | Impulse withstand voltage 1.2/50 µs | > 12 | kV | | U_{t} | Partial discharge RMS test voltage (q_m < 10 pC) | > 1.5 | kV | | - | | Min | | | d_{Cn} | Creepage distance 1) | 21.2 | mm | | $d_{Cp} \ d_{Cl}$ | Clearance 1) | 16 | mm | | CTI | Comparative tracking index (group IIIa) | 250 | | Note: 1) On housing from pin to primary hole. # **Applications examples** According to EN 50178 and IEC 61010-1 standards and following conditions: - Over voltage category OV 3 - Pollution degree PD2 - Non-uniform field | | EN 50178 | IEC 61010-1 | |--|--------------------------|-----------------| | $\overline{d_{\mathrm{Cp}},d_{\mathrm{Cl}},U_{\mathrm{Ni}}}$ | Rated insulation voltage | Nominal voltage | | Basic insulation | 1500 V | 2000 V | | Reinforced insulation | 1000 V | 1000 V | # **Safety** This transducer must be used in limited-energy secondary circuits according to IEC 61010-1. This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions. Caution, risk of electrical shock When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected. # Dimensions HOP 500-SB/SP1 (in mm) #### **Mechanical characteristics** General tolerance Primary through hole Transducer fastening Recommended fastening torque Recommended fastening torque Secondary connection Distance between holes axes 15 × 150 mm ±1 mm 104 × 40 mm 1 hole Ø 5.5 mm and 2 slots 5.5 × 35 mm 2.4 N·m 4 × holes 3.3 mm 1 N·m Molex 5045-04AG "Mating connector provided with the transducer" #### **Remarks** - $\bullet \ \ U_{\rm out}$ is positive when $I_{\rm P}$ flows in the direction of the arrow. - The return busbar and primary conductor elbow must be located at least at 2.5 × window length more far away from the transducer case. - Temperature of the primary conductor should not exceed - Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/. - Dynamic performances are best with a single busbar completely filling the primary hole.