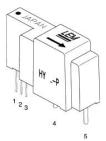


Current Transducer HY 10 ... 25-P/SP1

For the electronic measurement of currents: DC, AC, pulsed...,with galvanic separation between the primary circuit and the secondary circuit.

Electrical data							
RMS	y nominal S current _N (A)	Primary cumeasuring relation $I_{PM}(A)$		Primary conductor (mm)	Туре	RoHS sind date code	ce
10	1	±30		ø 1.1	HY 10-P/SP	45286	
15	5	±45		ø 1.4	HY 15-P/SP	1 45276	
25	;	±75	2	× Ø 1.4 1)	HY 25-P/SP	1 45269	
U_{out}	Output voltag	ge (Analog)	@ +I _{P N}	$R_{\rm L}$ = 10 k Ω , T	_A = 25 ° C	±2.5	V
			@ -I _{PN}	$R_{\rm L}$ = 10 k Ω , T	_A = 25 ° C	±1.5	V
\hat{I}_{Pmax}	Primary with	nstand peak	current	(1 ms)		50 × I _{PN}	
R_{INS}	Insulation re	esistance @ :	500 V D	C		> 500	$M\Omega$
$R_{_{\rm I}}$	Load resista	ance				> 1	kΩ
R_{out}	Output internal resistance			100	Ω		
U_{C}	Supply volta	age (±5 %) 2)				+5	V
I_{C}	Current con	sumption				±10	mA

Accuracy - Dynamic performance data					
ε Error @ I_{PN} , $T_A = 25 ° C$ (excluding	Error @ I_{PN} , T_{Δ} = 25 ° C (excluding offset)				
$\varepsilon_{\rm L}$ Linearity error ²⁾ (0 $\pm I_{\rm PN}$)		< ±1	% of I_{PN}		
TCU_{OF} Temperature coefficient of U_{OF}	typical	±1.5	mV/K		
	max	±3	mV/K		
$\mathit{TCU}_{\mathrm{out}}$ Temperature coefficient of U_{out} (%	of reading)	< ±0.1	%/K		
U_{OE} Electrical offset voltage @ T_{A} = 2	5 °C	+2 V ±25	mV		
U_{OM} Magnetic offset voltage @ $I_P = 0$,					
after an excursion of $1 \times I_{PN}$		< ±10	mV		
$t_{\rm D.90}$ Delay time to 90 % of the final out	itput value for $I_{\scriptscriptstyle \sf PN}$	step³)< 5	μs		
BW Frequency bandwidth (-3 dB) (sr	mall signal) 4)	DC 25	kHz		


General data				
T_{A}	Ambient operating temperature Ambient storage temperature	-10 +75 -25 +85	°C	
$T_{A \text{ st}}$	Mass	< 14	g	
	Standard	EN 50178: 1997		

Notes: 1) Conductor terminals are soldered together

2) Linearity data exclude the electrical offset

³⁾ For a $di/dt = 50 \text{ A/}\mu\text{s}$

I_{PN} = 10 ... 25 A

Features

- Hall effect measuring principle
- Galvanic separation between primary and secondary circuit
- Insulation voltage 2500 V
- Compact design for PCB mounting
- Low power consumption
- Extended measuring range (3 × I_{PN})
- Insulating plastic case recognized according to UL 94-V0.

Special feature

• Single power supply +5 V.

Advantages

- Easy installation
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- Static converters for DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied application
- General purpose inverters.

Application Domain

• Industrial.

Current Transducer HY 10 ... 25-P/SP1

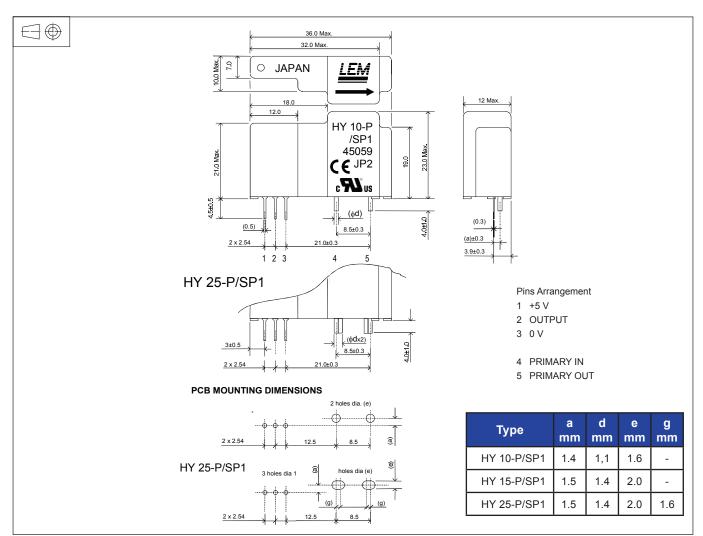
Insulation coordination					
$\begin{array}{c} U_{\rm d} \\ U_{\rm Nm} \end{array}$	RMS voltage for AC insulation test, 50 Hz, 1 min Rated insulation RMS voltage	2.5 500 ¹⁾	kV V		

Note: 1) Pollution class 2, overvoltage category III.

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.


Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Dimensions HY 10 ... 25-P/SP1 (in mm)

Remark

• Temperature of the primary conductor should not exceed 100°C.