

Current Transducer LA 305-S/SP19

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 500 A$

1623	6
------	---

Electrical data							
I _{PN}	Primary nominal r.m.s. current			500	500		
I _P	Primary current, measuring range (@ ± 24V)		0 ± 1000				Α
Î	Overload capability during 10 ms		40			kΑ	
I _P	Measuring resistance @		$T_{\Delta} = 0$	70°C	T_{Δ}	= 85°C	
141			\mathbf{R}_{Mmin}^{N}	$R_{_{Mmax}}$		$_{\rm n}$ ${ m f R}_{ m Mmax}$	
	with ± 15 V	$@ \pm 600 A_{max}$	0	13	0	10	Ω
		@ ± 650 A _{max}	0	8	0	5	Ω
		@ ± 680 A _{max}	0	6	0	3	Ω
	with ± 24 V	@ ± 600 A _{max}	3	13	3	10	Ω
		@ ± 950 A _{max}	3	8	3	5	Ω
		@ ± 1000 A _{max}	3	6	3	3	Ω
I _{SN}	Secondary nominal r.m.s.	current		142	2.8		mΑ
K _N	Conversion ratio			1:	3500		
v c	Supply voltage (± 5 %)			± 1	5 2	24	V
I _c	Current consumption			28	(@ ±24	4 V) + I _S	mΑ
$\check{\mathbf{V}}_{d}$	R.m.s. voltage for AC isola	ation test, 50 Hz, 1	mn	6		Ü	kV
V e	R.m.s. voltage for partial dis	scharges extinction @	10 pC	< 2	.8		kV

Accuracy - D	vnamic ner	formance data
Accuracy D	YIIGIIIIO PCI	ioiiiiaiioc aata

X _G	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C		± 0.8		%
$\mathbf{e}_{\scriptscriptstyle\! \! \scriptscriptstyle \perp}$	Linearity		< 0.1		%
			Тур	Max	
I _o	Offset current @ $I_p = 0$, $T_{\Delta} = 25^{\circ}$ C			Max ± 0.15 ± 0.30	mΑ
I _{OM}	Residual current 1) @ $I_p = 0$, after an	overload of 3 x I _{PN}		± 0.30	mΑ
I _{OT}	Thermal drift of I _o	- 40°C + 70°C	± 0.30	± 0.60 ± 0.80	mΑ
		- 50°C + 85°C		± 0.80	mΑ
t _{ra}	Reaction time @ 10 % of I_{PN}		< 500		ns
t,	Response time 2 @ 90 % of I _{PN}		< 1		μs
di/dt	di/dt accurately followed		> 100		A/µs
f	Frequency bandwidth (- 3 dB)		DC 1	100	kHz

General data

T _A	Ambient operating temperature		- 40 (- 50) ³⁾ + 8	5 °C
T _s	Ambient storage temperature		- 50 + 90	°C
R̈́s	Secondary coil resistance @	$T_{\Delta} = 70^{\circ}C$	70	Ω
Ü		$T_{\Lambda} = 85^{\circ}C$	73	Ω
m	Mass	^	350	g
	Standards		EN 50155	

 $\underline{\text{Notes}}$: 1) The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- ³⁾ No guarantee on this value, tests not carried out during production.

Features

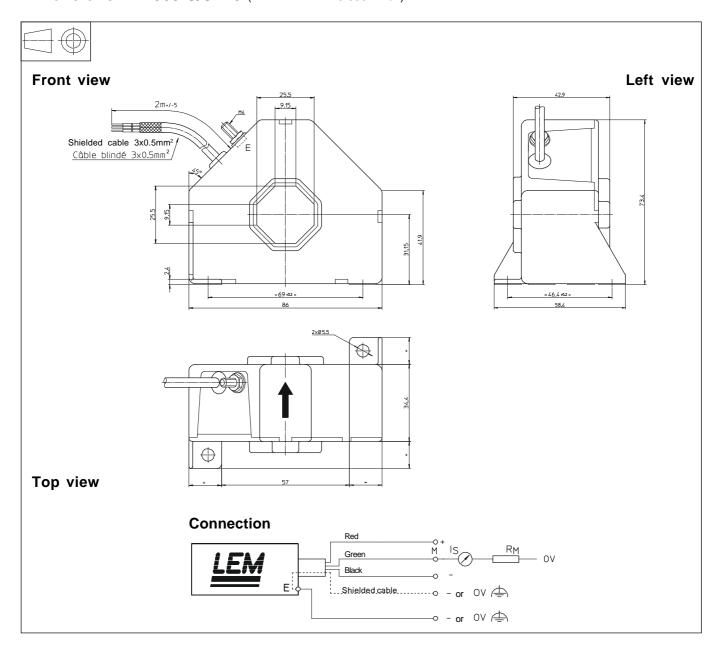
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Copyright protected.

Special features

- **I**_{PN} = 500 A
- $I_P = 0 .. \pm 1000 \text{ A } (@ \pm 24 \text{ V})$
- $\mathbf{K}_{N} = 1:3500$
- $V_{c} = \pm 15 ... 24 (\pm 5 \%) V$
- T_A = -40°C (-50°C) 3 ... + 85°C
- Connection to secondary circuit on shielded cable 3 x 0.5 mm²
- Internal shield connected to shielded cable
- Serigraphy with customer specification number
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060911/3

Dimensions LA 305-S/SP19 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection of secondary
- Connection of screen Fastening torque, max.
- ± 0.5 mm
- 2 holes Ø 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.

25.5 x 25.5 mm

shielded cable 3 x 0.5 mm²

M4 threaded studs 1.2 Nm or .88 Lb - Ft

Remarks

- \bullet ${\bf I}_{_{\rm S}}$ is positive when ${\bf I}_{_{\rm P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.