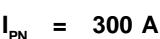
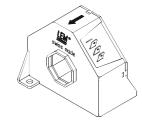
Current Transducer LA 305-S/SP8

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).





Electrical data	

CE

	oonioar data					
PN	Primary nominal r.m.s. current Primary current, measuring range			300	A	
>				0 ± 500		
Ŕ _M	Measuring resistance @			$T_{A} = 70^{\circ}C T_{A} = 85$		
			R _{M min}	R _{Mmax} I	R _{M min} R _{Mr}	nax
	with ± 12 V	@ ± 300 A _{max}	0	47	0 45	5Ω
		@ ± 500 A _{max}	0	14	0 12	<u>2</u> Ω
	with ± 15 V	@ ± 300 A _{max}	0	70	5 68	3Ω
		@ ± 500 A _{max}	0	28	5 26	δ Ω
ŝN	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption			120	mA	
N				1 : 2500		
Ċ				± 12	V	
с С				20 (@ ±15 V) + I _s mA		
Ь	R.m.s. rated voltage ¹⁾ , safe separation			1750	V	
	basic isolation			3500		V
d	R.m.s. voltage for AC	isolation test, 50 Hz, 1	1 mn	6		kV
G	Overall accuracy @ I _{PN} Linearity error	, T _A = 25°C		± 0.8 < 0.1		% %
e _l	Linearity error			< 0.1	l	%
				Тур		
)	Offset current @ $I_{P} = 0$,				± 0.20	
М	Residual current ²⁾ @ I _P				± 0.40	
т	Thermal drift of I _o	- 40°C	+ 85°C	± 0.2	2 ± 0.50) mA
а	Reaction time @ 10 %	of I _{PN}		< 50	0	ns
	Response time 3) @ 90	% of I _{PN}		< 1		μs
di/dt	di/dt accurately followe	ed		> 100		A/µs
	Frequency bandwidth (- 3 dB)		DC .	. 100	kHz
G	eneral data					
A	Ambient operating ten	nperature		- 40	+ 85	°C
r _s	Ambient storage temp			- 50	+ 90	°C

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Specials features

- $T_A = -40^{\circ}C .. + 85^{\circ}C$
- Connection to secondary circuit on 3 Faston 6.3 x 0.8 mm.
- Potted
 - Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

<u>Notes</u> : ¹⁾ Pollution class 2. With a non insulated primary bar which fills the through-hole

 $\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$

 $T_{\Lambda} = 85^{\circ}C$

35

37

290

EN 50155(95.11.01)

Ω

Ω

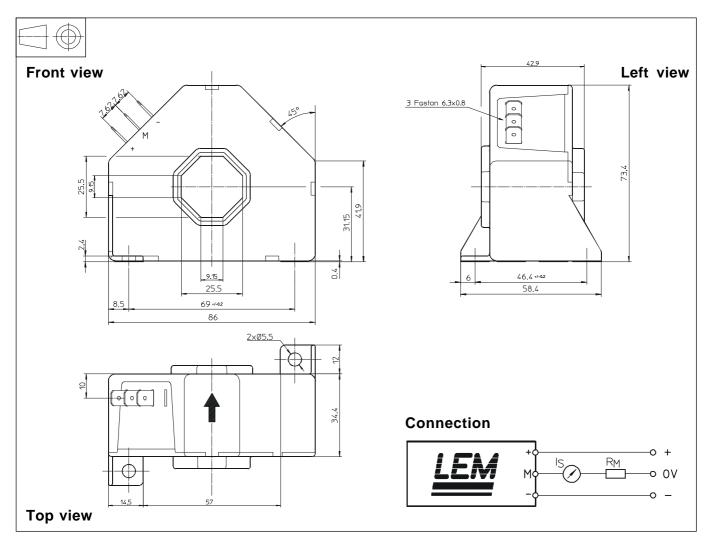
g

²⁾ The result of the coercive field of the magnetic circuit

³⁾ With a di/dt of 100 A/µs.

Secondary coil resistance @

060913/4


Mass

Standards

Ř

m

Dimensions LA 305-S/SP8 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
 - Fastening torque, max.
- Primary through-hole
- Connection of secondary

- 2 holes \emptyset 5.5 mm 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 25.5 x 25.5 mm Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.