

Current Transducer LA 25-NP/SP39

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

$I_{PN} = 2 A$

Electrical data

I_{PN}	Primary nominal RMS current	2	A
I_{PM}	Primary current, measuring range	0 ... ± 2.5	A
R_M	Measuring resistance with ± 15 V	$R_{M\ min}$ 50	$R_{M\ max}$ 172
	@ $\pm 2 A_{max}$	50	Ω
	@ $\pm 2.5 A_{max}$	115	Ω
I_{SN}	Secondary nominal RMS current	40	mA
N_P/N_S	Turns ratio	20 : 1000	
U_c	Supply voltage (± 5 %)	± 15	V
I_c	Current consumption	$10 + I_s$	mA

Accuracy - Dynamic performance data

ε_{tot}	Total error @ I_{PN} , $T_A = 25$ °C	± 0.6	%
ε_L	Linearity error	< 0.2	%
I_{OE}	Electrical offset current ¹⁾ @ $I_p = 0$, $T_A = 25$ °C	± 0.05	mA
I_{OM}	Magnetic offset current ²⁾ @ $I_p = 0$ and specified R_M , after an overload of $3 \times I_{PN}$	± 0.05	mA
I_{OT}	Temperature variation of I_O -40 °C ... $+85$ °C	± 0.25	mA
$t_{D\ 90}$	Delay time to 90 % of the final output value for I_{PN} step ³⁾ < 1		μs
BW	Frequency bandwidth (-1 dB)	DC ... 150	kHz

General data

T_A	Ambient operating temperature	-40 ... +85	°C
$T_{A\ st}$	Ambient storage temperature	-50 ... +100	°C
R_p	Resistance of primary (winding) @ $T_A = 25$ °C	< 40	mΩ
R_s	Resistance of secondary winding @ $T_A = 85$ °C	115	Ω
L_p	Insertion inductance	21	μH
R_{INS}	Insulation resistance @ 500 V, $T_A = 25$ °C	> 1500	MΩ
m	Mass Standard	22 EN 50155: 2017 ⁴⁾	g

Notes: ¹⁾ Measurement carried out after 15 mn functioning

²⁾ The result of the coercive field of the magnetic circuit

³⁾ For a $di/dt = 50$ A/μs

⁴⁾ Additional information available on request.

Current Transducer LA 25-NP/SP39

Insulation coordination

U_d	RMS voltage for AC insulation test, 50 Hz, 1 min	3	kV
U_{Ni}	Impulse withstand voltage 1.2/50 μ s	16	kV
		Min	
d_{Cp}	Creepage distance	19.5	mm
d_{Cl}	Clearance	19.5	mm
CTI	Comparative tracking index (group IIIa)	175	

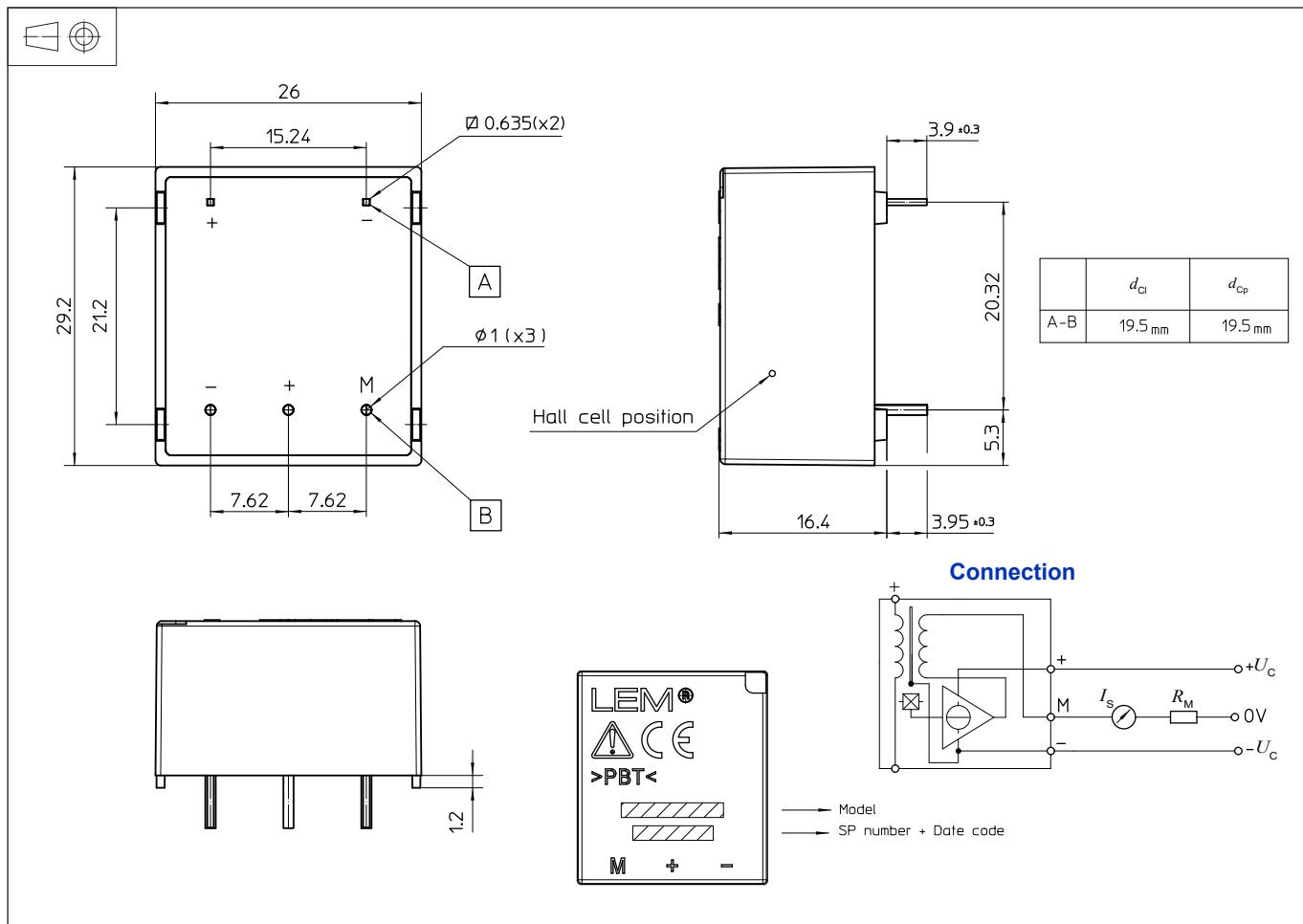
Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).


Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 25-NP/SP39 (in mm)

Mechanical characteristics

- General tolerance ±0.2 mm
- Fastening & connection of primary 2 pins
- Fastening & connection of secondary 3 pins Ø 1 mm
- Recommended PCB hole 1.2 mm

Remark

- I_s is positive when I_p flows from terminal + to terminal -.