

Current Transducer LF 205-P/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

$I_{\rm PN}$	Primary nominal current RMS		20	200			
I _{PM}	Primary current, measuring range			0 ±420			Α
R _M	Measuring resistance @		$T_{\rm A} = 70 \ ^{\circ}{\rm C}$ $T_{\rm A} = 85 \ ^{\circ}{\rm C}$				
					R _{M mi}	n R _{M max}	
	with ±12 V	@ ±200 A _{max}	0	71	0	69	Ω
		@ ±420 A _{max}	0	14	0	12	Ω
	with ±15 V	@ ±200 A _{max}	0	100	23	98	Ω
		@ ±420 A _{max}	0	28	23	26	Ω
Isn	Secondary nominal current RMS			10	100		mA
$N_{\rm P}/N_{\rm S}$	Turns ratio			1:2000			
$U_{\rm c}$	Supply voltage (+5 %)		±1	±12 15			
I _C	Current consumption	,		17	' +Is		mA
Accuracy - Dynamic performance data							
$\varepsilon_{\rm tot}$	Total error @ I_{PN} , T_{A}	= 25 °C		±C	.5		%
EL	Linearity error			<	0.1		%
-L	,			Ту	a II	Max	
I _{OE}	Electrical offset curre	nt @ $I_{-} = 0, T_{-} = 25$	°C	,		±0.2	mΑ
I _{om}	Magnetic offset curre			R			
-0 M	g	after an overload			-	±0.1	mA
I _{OT}	Temperature variation					±0.4	mA
t _{D 10}	Delay time to 10 % of the final output value for I_{PN} ste					< 500	ns
^c D 10 t _{D 90}				< 1	μs		
BW	Frequency bandwidth		Р		C 1	-	kHz
		· · ·					
General data							

T_{A}	Ambient operating temperature		-40 +85	°C
T _{Ast}	Ambient storage temperature		-40 +90	°C
R _s	Secondary coil resistance	@ T _A = 70 °C	33	Ω
0		@ T _A = 85 °C	35	Ω
т	Mass	- //	58	g
	Standards		EN 50178: 1997	-

<u>Notes</u>: ¹⁾ As a result of the coercive force (Hc) of the magnetic circuit ²⁾ With a di/dt of 100 A/µs.

*I*_{PN} = **200 A**

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special feature

 Mounting clips moulded into the transducer housing, attach to printed circuit boards 1.6 mm thick.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized delay time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Page 1/3

Current Transducer LF 205-P/SP1

Insulation coordination				
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	3.5	kV	
$U_{\rm Ni}$	Impulse withstand voltage 1.2/50 µs	8.8	kV	
$U_{\rm t}$	Partial discharge RMS test voltage (q_m < 10 pC)	> 2	kV	
		Min		
$d_{\rm Cp}$	Creepage distance	9.5	mm	
$d_{CP}^{}$ $d_{CI}^{}$	Clearance	9.5	mm	
CTI	Comparative Tracking Index (group IIIa)	175		

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

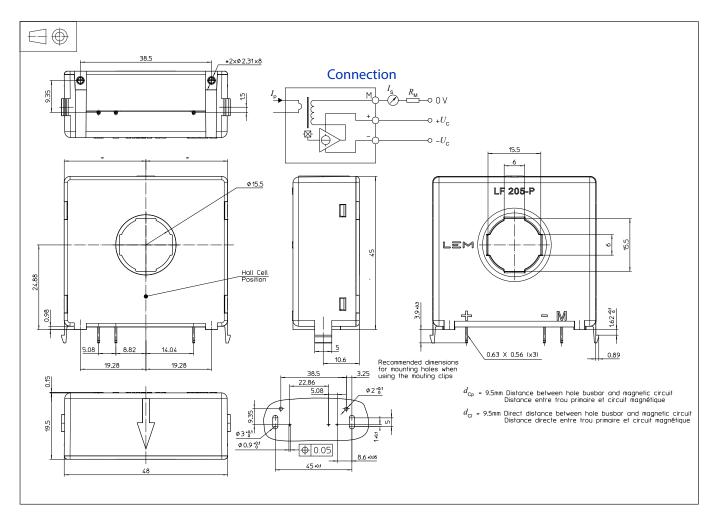
	EN 50178	IEC 61010-1	
$d_{\rm Cp}, d_{\rm Cl}, U_{\rm Ni}$	Rated insulation voltage	Nominal voltage	
Basic insulation	800 V	800 V	
Reinforced insulation	400 V	300 V	

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock


When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 205-P/SP1 (in mm)

Mechanical characteristics

- General tolerance
- Secondary connection Recommended PCB hole
- Primary through-hole
- Supplementary fastening Recommended PCB hole Recommended screws
- ±0.2 mm
- 3 pins 0.63 x 0.56 mm
- Ø 0.9 mm Ø 15.5 mm
- 2 holes Ø 2.31 mm Ø 2.4 mm KA22 x 6

Remarks

- $I_{\rm s}$ is positive when $I_{\rm p}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (d*i*/d*t* and delay time) are best with a single bar completely filling the primary hole.