

Current Transducer LT 1005-S/SP19

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

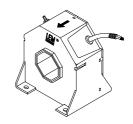
CE

Electrical data

I _{PN}	Primary nominal r.m.s. current Primary current, measuring range			1000			Α		
I _P					0 ± 2400			Α	
$\dot{R}_{_{\mathrm{M}}}$	Measuring resistance @		$T_{\Delta} = 70^{\circ}C$		$T_{\Delta} = 85^{\circ}C$				
141			R _{M min}	\mathbf{R}_{Mmax}		F	R _{M min}	$\mathbf{R}_{\mathrm{Mmax}}$	
	with ± 15 V	$@ \pm 1300 \text{ A}_{max}$	0	10	@ ± 125	0 A 1)		10	Ω
		@ ± 1400 A max	0	7			0	5	Ω
		@ ± 1500 A _{max}	0	4	@ ± 145	0 A 1)	0	3	Ω
	with ± 24 V	@ ± 2200 A max	0	10	@ ± 210	0 A 1)	3	10	Ω
		@ ± 2300 A _{max}	0	7			3	5	Ω
		@ ± 2400 A max	0	5			3	3	Ω
I _{SN}	Secondary nominal r.m.s. current				200			mΑ	
K _N	Conversion ratio				1:5	000			
V _c	Supply voltage (± 5 %)			± 15	5 2	4	V		
I c	Current consumption				$30(@\pm 24V)+I_{S} mA$			mΑ	
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 12 2)					kV			
-						1.5 ³	3)		kV
V	R.m.s. voltage f	or partial dischard	e extin	ction	0 10 pC	4.1			kV

Accuracy - Dynamic performance data

$\overline{e_{\scriptscriptstyle L}^{\scriptscriptstyle G}}$	Overall accuracy @ I_{PN_1} $T_A = 25$ °C Linearity error		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C - 50°C + 85°C	Typ ± 0.2	Max ± 0.4 ± 0.5 ± 0.8	mA mA mA
t _r di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz


General data

$T_{_{A}}$	Ambient operating temperature		- 40 (-50) +	85 °C
T _s	Ambient storage temperature		- 50 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	40	Ω
Ü		$T_A = 85^{\circ}C$	42	Ω
m	Mass		700	g
	Standards	EN 50155 : 1955		

Notes : 1) I_{P max} @ +85°C & customer measuring resistance

- 2) Between primary and secondary + internal shield + screened cable
- 3) Between secondary and internal shield + screened cable
- 4) With a di/dt of 100 A/µs.

$I_{PN} = 1000 A$

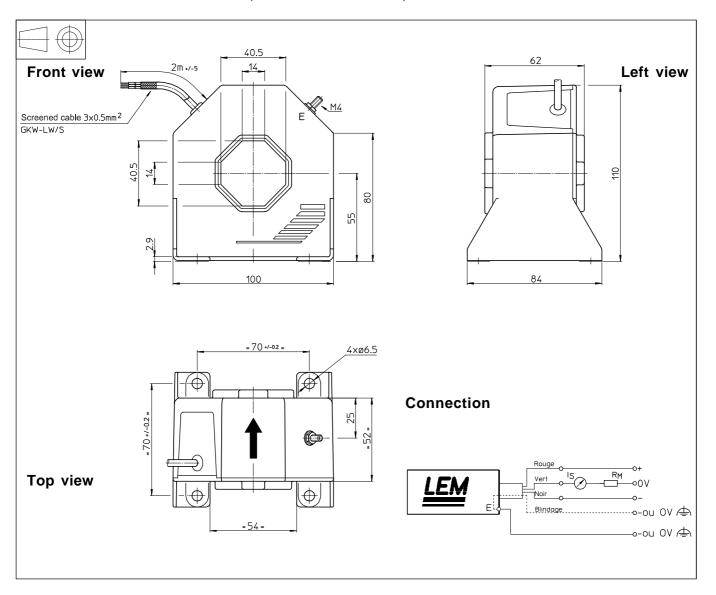
Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 2400 A$
- $V_c = \pm 15 ... 24 \text{ V } (\pm 5 \%)$
- $V_d = 12 \text{ kV}$
- $T_A = -40^{\circ}C (-50^{\circ}C) ... + 85^{\circ}C$
- Secondary connection on screened cable 3 x 0.5 mm²
- Shield between primary and secondary connected to the cable screening
- Railway equipment
- · Customer marking.

Advantages


- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LT 1005-S/SP19 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Recommended fastening torque 5 Nm or 3.69 Lb. - Ft

• Primary through-hole

· Connection of secondary

Connection to terminal E

Recommended fastening torque

± 0.5 mm

4 holes \varnothing 6.5 mm

4 x M6 steel screws

40.5 x 40.5 mm

screened cable 3 x 0.5 mm²

M4 threaded stud

1.2 Nm or 0.88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

IMPORTANT NOTICE

The information in this document is considered accurate and reliable. However, LEM International SA and any company directly or indirectly controlled by LEM Holding SA ("LEM") do not provide any guarantee or warranty, expressed or implied, regarding the accuracy or completeness of this information and are not liable for any consequences resulting from its use. LEM shall not be responsible for any indirect, incidental, punitive, special, or consequential damages (including, but not limited to, lost profits, lost savings, business interruption, costs related to the removal or replacement of products, or rework charges) regardless of whether such damages arise from tort (including negligence), warranty, breach of contract, or any other legal theory.

LEM reserves the right to update the information in this document, including specifications and product descriptions, at any time without prior notice. Information in this document replaces any previous versions of this document. No license to any intellectual property is granted by LEM through this document, either explicitly or implicitly. Any Information and product described herein is subject to export control regulations.

LEM products may possess either unidentified or documented vulnerabilities. It is the sole responsibility of the purchaser to design and operate their applications and products in a manner that mitigates the impact of these vunerabilities. LEM disclaims any liability for such vulnerabilities. Customers must select products with security features that best comply with applicable rules, regulations, and standards for their intended use. The purchaser is responsible for making final design decisions regarding its products and for ensuring compliance with all legal, regulatory, and security-related requirements, irrespective of any information or support provided by LEM.

LEM products are not intended, authorized, or warranted for use in life support, life-critical, or safety-critical systems or equipment, nor in applications where failure or malfunction of an LEM product could result in personal injury, death, or significant property or environmental damage. LEM and its suppliers do not assume liability for the inclusion and/or use of LEM products in such equipment or applications; thus, this inclusion and/or use is at the purchaser's own and sole risk. Unless explicitly stated that a specific LEM product is automotive qualified, it should not be used in automotive applications. LEM does not accept liability for the inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

Applications that are described herein are for illustrative purposes only. LEM makes no representation or warranty that LEM products will be suitable for a particular purpose, a specified use or application. The purchaser is solely responsible for the design and operation of its applications and devices using LEM products, and LEM accepts no liability for any assistance with any application or purchaser product design. It is purchaser's sole responsibility to determine whether the LEM product is suitable and fit for the purchaser's applications and products planned, as well as for the planned application and use of purchaser's third-party customer(s).

Stressing and using LEM products at or above limiting values will cause permanent damage to the LEM product and potentially to any device embedding or operating with LEM product. Limiting values are stress ratings only and operation of the LEM product at or above conditions and limits given in this document is not warranted. Continuous or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the LEM product.

LEM products are sold subject to the general terms and conditions of commercial sale, as published at www.lem.com unless otherwise agreed in a specific written agreement. LEM hereby expressly rejects the purchaser's general terms and conditions for purchasing LEM products by purchaser. Any terms and conditions contained in any document issued by the purchaser either before or after issuance of any document by LEM containing or referring to the general terms and conditions of sale are explicitly rejected and disregarded by LEM, and the document issued by the purchaser is wholly inapplicable to any sale or licensing made by LEM and is not binding in any way on LEM.

© 2025 LEM INTERNATIONAL SA - All rights reserved