

Capteur de tension LV 100/SP71

$I_{PN} = 10 \text{ mA}$

Pour la mesure électronique des tensions : DC, AC, Impulsionnelles..., avec une isolation galvanique entre le circuit primaire (haute tension) et le circuit secondaire (circuit électronique).

Caractéristiques électriques principales

I_{PN}	Courant primaire efficace nominal	10	mA
I_p	Courant primaire, plage de mesure	0 .. ± 20	mA
R_M	Résistance de mesure	$R_{M\min}$	$R_{M\max}$
	avec ± 15 V	0	185
		0	60
	avec ± 24 V	47	355
		47	150
		50	mA
I_{SN}	Courant secondaire efficace nominal	10000 : 2000	
K_N	Rapport de transformation	± 15 .. 24	V
V_c	Tension d'alimentation (±5%)	25 (@±24V) + I_s	mA
I_c	Courant de consommation	9.5	kV
V_d	Tension efficace d'essai diélectrique, 50 Hz, 1 mn		

Précision - Performances dynamiques

X_G	Précision globale @ I_{PN} , $T_A = 25^\circ\text{C}$	± 0.7	%
Σ_L	Linéarité	< 0.1	%
I_o	Courant de décalage @ $I_p = 0$, $T_A = 25^\circ\text{C}$	Typ	Max
I_{OT}	Dérive en température de I_o - 25°C .. + 70°C	± 0.3	mA
		± 0.4	mA
t_r	Temps de retard ¹⁾ @ 63 % de V_{PN}	30 .. 100	μs
f	Bande passante (-1dB)	DC .. 8	kHz

Caractéristiques générales

T_A	Température ambiante de service	- 25 .. + 70	°C
T_s	Température ambiante de stockage	- 40 .. + 85	°C
R_p	Résistance bobine primaire @ $T_A = 70^\circ\text{C}$	1900	Ω
R_s	Résistance bobine secondaire @ $T_A = 70^\circ\text{C}$	60	Ω
m	Masse	450	g
	Normes	EN 50155	

Notes : ¹⁾ $R_1 = 200 \text{ k}\Omega$ (Constante de temps L/R, engendrée par la résistance et l'inductance du circuit primaire)

Généralités

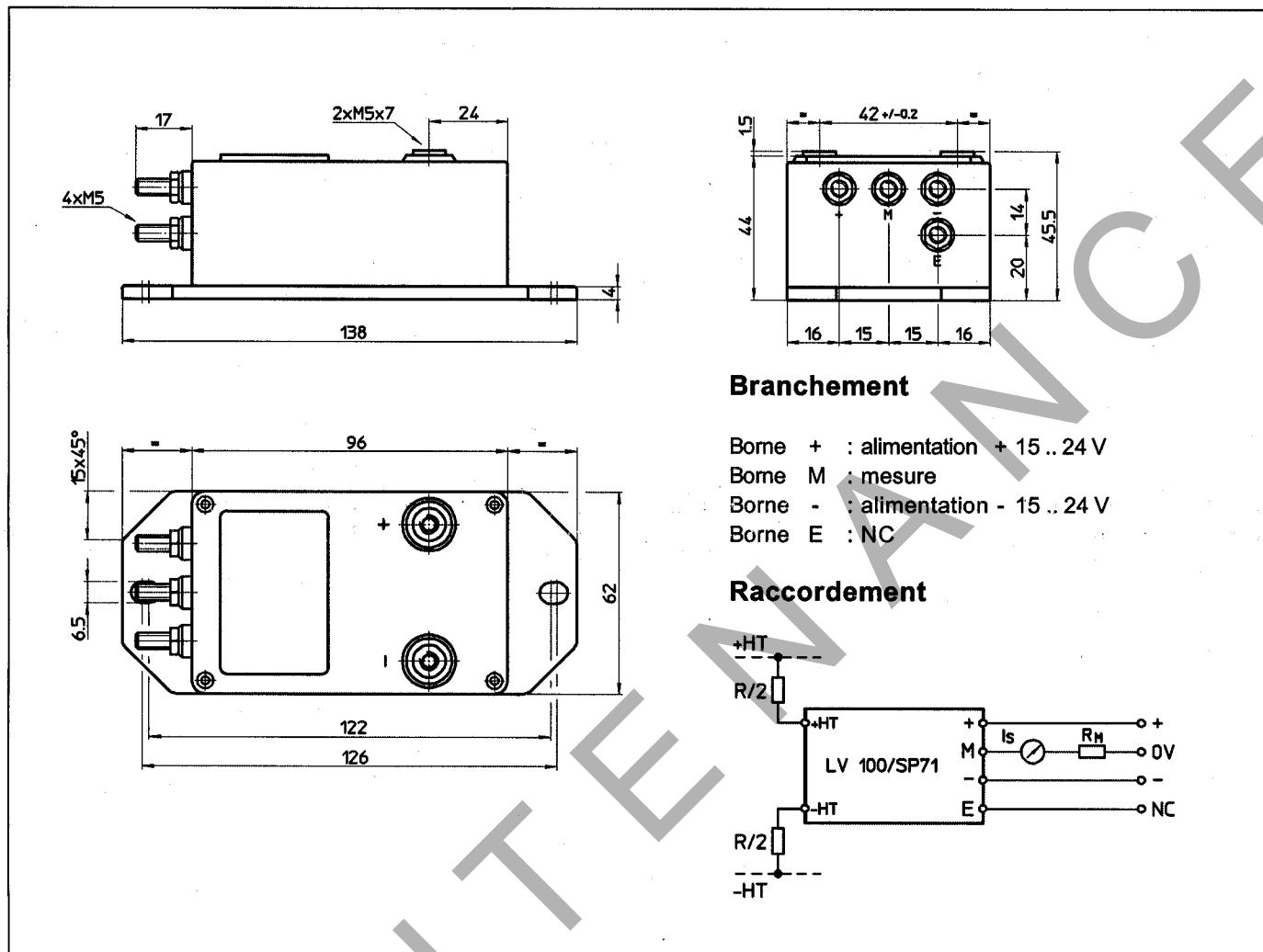
- Capteur de tension de type boucle fermée (à compensation) utilisant l'effet Hall
- Boîtier injecté en matière isolante auto-extinguible de classe UL 94-V0.

Principes d'utilisation

- Pour mesurer une tension, il faut prélever un courant proportionnel à la tension à mesurer
- Le primaire du capteur est à raccorder directement aux bornes de la tension à mesurer avec une résistance R_1 en série.

Particularités

- $V_c = \pm 15 .. 24 (\pm 5\%) \text{ V}$
- $V_d = 9.5 \text{ kV}$
- Circuit électrique seulement accessible pour analyse de panne
- Entièrement moulé
- Matériel ferroviaire.


Avantages

- Excellente précision
- Très bonne linéarité
- Faible dérive en température
- Faible temps de retard
- Grande bande passante
- Grande immunité aux perturbations extérieures
- Faible perturbation en mode commun.

Applications

- Variateurs de vitesse et entraînements à servomoteur AC
- Convertisseurs statiques pour entraînements à moteur DC
- Applications alimentées par batteries
- Alimentations Sans Interruption (ASI)
- Alimentations pour applications de soudage.

Dimensions LV 100/SP71 (en mm)

Caractéristiques mécaniques

- Tolérance générale
- Fixation
- Connexion primaire
- Connexion secondaire
- Couple de serrage

± 0.3 mm
2 trous $\varnothing 6.5$ mm
bornes écrous M5
tiges filetées M5
2.2 Nm

Remarques générales

- I_s est positif lorsqu'une tension positive V_p est appliquée à la borne +HT.

Indications pour l'utilisation du capteur de tension type LV 100/SP71

Résistance primaire R_1 : la précision optimale du capteur est obtenue avec le courant primaire nominal. Dans la mesure du possible, R_1 sera dimensionnée pour que la tension nominale à mesurer corresponde à un courant primaire de 10 mA.

Exemple : soit une tension à mesurer $V_{PN} = 1000$ V a) $R_1 = 100 \text{ k}\Omega/40 \text{ W}$, $I_p = 10 \text{ mA}$ Précision = $\pm 0.7 \%$ de V_{PN} (@ $T_A = +25^\circ\text{C}$)
 b) $R_1 = 400 \text{ k}\Omega/ 5 \text{ W}$, $I_p = 2.5 \text{ mA}$ Précision = $\pm 2.5 \%$ de V_{PN} (@ $T_A = +25^\circ\text{C}$)

Plage d'utilisation : compte tenu d'une part de la résistance du bobinage primaire (qui doit être faible par rapport à R_1 pour que sa variation en température soit négligeable) et d'autre part de l'isolation, ce capteur convient pour la mesure de tension nominale de 100 V à 4000 V.

IMPORTANT NOTICE

The information in this document is considered accurate and reliable. However, LEM International SA and any company directly or indirectly controlled by LEM Holding SA ("LEM") do not provide any guarantee or warranty, expressed or implied, regarding the accuracy or completeness of this information and are not liable for any consequences resulting from its use. LEM shall not be responsible for any indirect, incidental, punitive, special, or consequential damages (including, but not limited to, lost profits, lost savings, business interruption, costs related to the removal or replacement of products, or rework charges) regardless of whether such damages arise from tort (including negligence), warranty, breach of contract, or any other legal theory.

LEM reserves the right to update the information in this document, including specifications and product descriptions, at any time without prior notice. Information in this document replaces any previous versions of this document. No license to any intellectual property is granted by LEM through this document, either explicitly or implicitly. Any information and product described herein is subject to export control regulations.

LEM products may possess either unidentified or documented vulnerabilities. It is the sole responsibility of the purchaser to design and operate their applications and products in a manner that mitigates the impact of these vulnerabilities. LEM disclaims any liability for such vulnerabilities. Customers must select products with security features that best comply with applicable rules, regulations, and standards for their intended use. The purchaser is responsible for making final design decisions regarding its products and for ensuring compliance with all legal, regulatory, and security-related requirements, irrespective of any information or support provided by LEM.

LEM products are not intended, authorized, or warranted for use in life support, life-critical, or safety-critical systems or equipment, nor in applications where failure or malfunction of an LEM product could result in personal injury, death, or significant property or environmental damage. LEM and its suppliers do not assume liability for the inclusion and/or use of LEM products in such equipment or applications; thus, this inclusion and/or use is at the purchaser's own and sole risk. Unless explicitly stated that a specific LEM product is automotive qualified, it should not be used in automotive applications. LEM does not accept liability for the inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

Applications that are described herein are for illustrative purposes only. LEM makes no representation or warranty that LEM products will be suitable for a particular purpose, a specified use or application. The purchaser is solely responsible for the design and operation of its applications and devices using LEM products, and LEM accepts no liability for any assistance with any application or purchaser product design. It is purchaser's sole responsibility to determine whether the LEM product is suitable and fit for the purchaser's applications and products planned, as well as for the planned application and use of purchaser's third-party customer(s).

Stressing and using LEM products at or above limiting values will cause permanent damage to the LEM product and potentially to any device embedding or operating with LEM product. Limiting values are stress ratings only and operation of the LEM product at or above conditions and limits given in this document is not warranted. Continuous or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the LEM product.

LEM products are sold subject to the general terms and conditions of commercial sale, as published at www.lem.com unless otherwise agreed in a specific written agreement. LEM hereby expressly rejects the purchaser's general terms and conditions for purchasing LEM products by purchaser. Any terms and conditions contained in any document issued by the purchaser either before or after issuance of any document by LEM containing or referring to the general terms and conditions of sale are explicitly rejected and disregarded by LEM, and the document issued by the purchaser is wholly inapplicable to any sale or licensing made by LEM and is not binding in any way on LEM.

© 2025 LEM INTERNATIONAL SA – All rights reserved