

Voltage Transducer LV 25-P/SP15

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

$$I_{PN} = 8.33 \text{ mA}$$

Electrical data

I_{PN}	Primary nominal RMS current	8.33	mA
I_{PM}	Primary current, measuring range	0 ... ± 12.5	mA
R_M	Measuring resistance	R_M min	R_M max
	with ± 12 V	30	190
		30	100
	with ± 15 V	100	350
		100	190
I_{SN}	Secondary nominal RMS current	25	mA
N_P/N_S	Turns ratio	3000 : 1000	
U_C	Supply voltage (± 5 %)	$\pm 12 \dots 15$	V
I_C	Current consumption	10 (@ ± 15 V) + I_S	mA

Accuracy - Dynamic performance data

ε_{tot}	Total error @ I_{PN} , $T_A = 25$ °C @ $\pm 12 \dots 15$ V @ ± 15 V (± 5 %)	± 0.9 ± 0.8	%
ε_L	Linearity error	< 0.2 Max	%
I_O	Offset current ¹⁾ @ $I_P = 0$, $T_A = 25$ °C	± 0.15	mA
I_{OT}	Temperature variation of I_O -25 °C ... $+70$ °C	± 0.50	mA
t_{D90}	Delay time ²⁾ to 90 % of the final output value for U_{PN} step 40		μs

General data

T_A	Ambient operating temperature	-25 ... +70	°C
T_{Ast}	Ambient storage temperature	-45 ... +85	°C
R_P	Resistance of primary (winding) @ $T_A = 70$ °C	398	Ω
R_S	Resistance of secondary winding @ $T_A = 70$ °C	110	Ω
m	Mass	22	g
	Standards	EN 50155: 2017 ³⁾ UL 508: 2010	

Notes: ¹⁾ Measurement carried out after 15 min functioning

²⁾ $R_1 = 25$ kΩ (L/R constant, produced by the resistance and inductance of the primary circuit)

³⁾ Additional information available on request.

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $I_{PN} = 8.33$ mA
- $N_P/N_S = 3000 : 1000$
- $U_d = 4.1$ kV (to see page 2)
- $T_A = -25$ °C ... $+70$ °C.

Principle of use

- For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R_1 which is selected by the user and installed in series with the primary circuit of the transducer.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- High immunity to external interference.

Applications

- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- Battery chargers.

Application Domain

- Railway (fixed installations and onboard).

Voltage Transducer LV 25-P/SP15

Insulation coordination

U_d	RMS voltage for AC insulation test, 50 Hz, 1 min	4.1 ¹⁾	kV
U_{Ni}	Impulse withstand voltage 1.2/50 μ s	16	kV
		Min	
d_{Cp}	Creepage distance	19.5	mm
d_{Cl}	Clearance	19.5	mm
CTI	Comparative tracking index (group IIIa)	175	

Note: ¹⁾ Between primary and secondary.

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

UL 508: Ratings and assumptions of certification LV 25-P/SP15

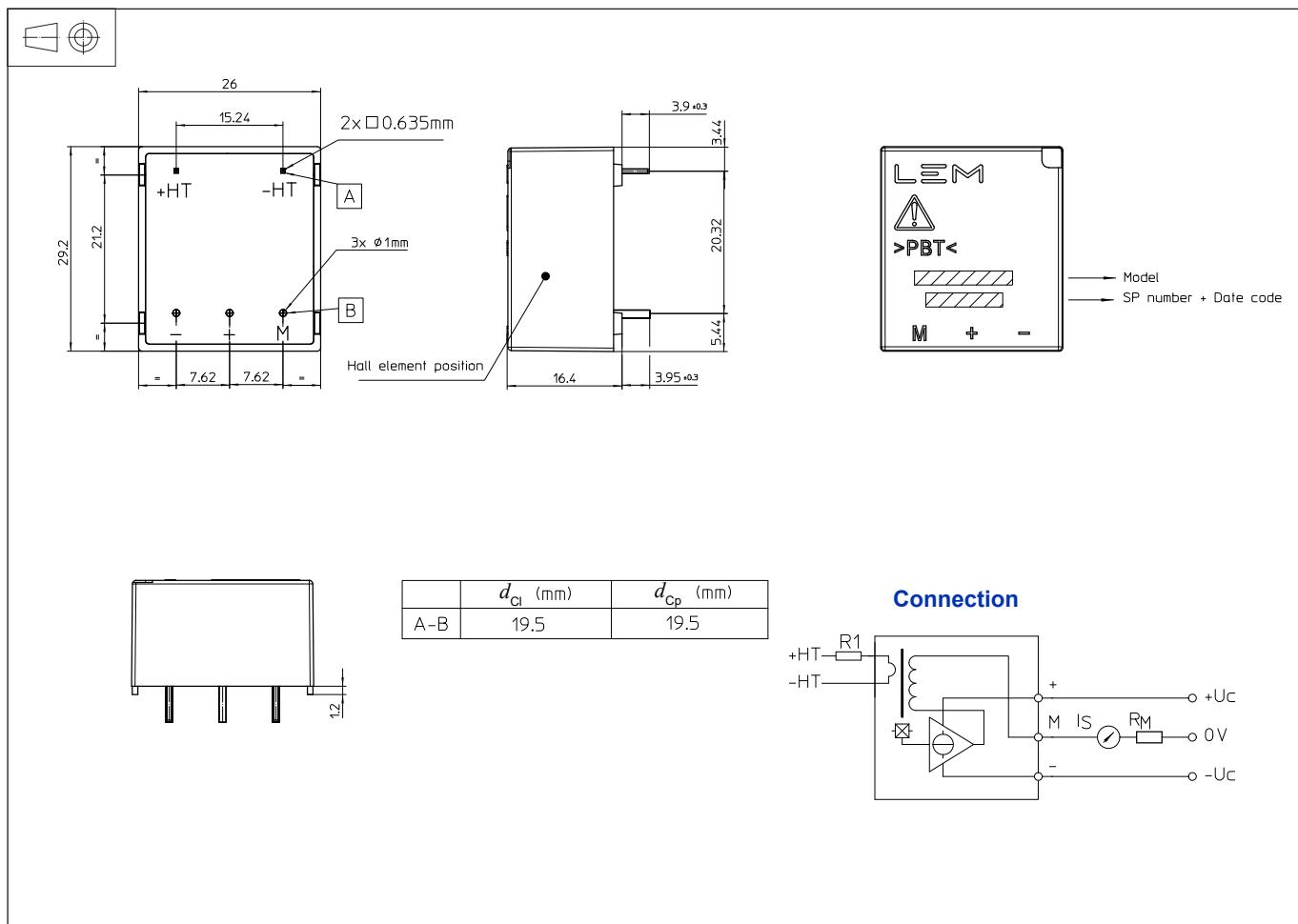
File # E189713 Volume: 2 Section: 1

Standards

- CSA C22.2 NO. 14 - 10 INDUSTRIAL CONTROL EQUIPMENT - Edition 11 - Revision Date 2011/08/01
- UL 508 STANDARD FOR INDUSTRIAL CONTROL EQUIPMENT - Edition 17 - Revision Date 2010/04/15.

Parameter	Symbol	Unit	Value
Primary involved potential		V AC/DC	600
Maximum ambient operating temperature	$T_{A_{max}}$	°C	85
Primary current	I_P	mA	0 to 8.33
Supply voltage	U_C	V DC	±12 to ±15
Secondary nominal RMS current	I_{S_N}	mA	25

Conditions of acceptability


When installed in the end-use equipment, consideration shall be given to the following:

- 1 - *These devices must be mounted in a suitable end-use enclosure.*
- 2 - *The terminals have not been evaluated for field wiring.*
- 3 - *The LV 25-P series are intended to be mounted on the printed wiring board of the end-use equipment (with a minimum CTI of 100).*
- 4 - *The LV 25-P series shall be used in a pollution degree 2 environment when the Printed Wiring Board has not been coated.*
- 5 - *The LV 25-P series shall be mounted on the load side of line filters.*
- 6 - *Low voltage circuits are intended to be powered by a circuit derived from an isolating source (such as a transformer, optical isolator, limiting impedance or electro-mechanical relay) and having no direct connection back to the primary circuit (other than through the grounding means).*
- 7 - *Based on results of temperature tests, in the end use application, a maximum of 100 °C cannot be exceeded at soldering point between primary coil pin and soldering point of on the primary bus bar (corrected to the appropriate evaluated max. surrounding air).*

Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.

Dimensions LV 25-P/SP15 (in mm)

Mechanical characteristics

- General tolerance ± 0.2 mm
- Fastening & connection of primary 2 pins
 0.635×0.635 mm
- Fastening & connection of secondary 3 pins Ø 1 mm
 Recommended PCB hole Ø 1.2 mm

Remarks

- I_s is positive when U_p is applied on terminal +HV.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: <https://www.lem.com/en/file/3137/download/>.

Instructions for use of the voltage transducer model LV 25-P/SP15

Primary resistor R_1 ; the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, R_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA.

Example: Voltage to be measured $U_{PN} = 250 \text{ V}$ a) $R_1 = 25 \text{ k}\Omega / 2.5 \text{ W}$, $I_p = 10 \text{ mA}$ Total error = $\pm 0.8 \%$ of U_{PN} (@ $T_A = +25 \text{ }^\circ\text{C}$)
 b) $R_1 = 50 \text{ k}\Omega / 1.25 \text{ W}$, $I_p = 5 \text{ mA}$ Total error = $\pm 1.6 \%$ of U_{PN} (@ $T_A = +25 \text{ }^\circ\text{C}$)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to R_1 , in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 10 to 500 V.