

Voltage Transducer LV 25-P/SP17

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

$I_{PN} = 6.6 \text{ mA}$
 $U_{PN} = 10 \dots 1000 \text{ V}$

Electrical data

I_{PN}	Primary nominal RMS current	6.6	mA
I_{PM}	Primary current, measuring range	0 ... ± 9.9	mA
R_M	Measuring resistance	$R_M \text{ min}$ $R_M \text{ max}$	
	with $\pm 15 \text{ V}$	10 212	Ω
		10 125	Ω
	with $\pm 24 \text{ V}$	100 380	Ω
		100 236	Ω
I_{SN}	Secondary nominal RMS current	50	mA
N_P/N_S	Turns ratio	5400 : 710	
U_C	Supply voltage ($\pm 5 \%$)	$\pm 15 \dots 24$	V
I_C	Current consumption	18.5 (@ ± 24) + I_S	mA

Accuracy - Dynamic performance data

ε_{tot}	Total error @ I_{PN} , $T_A = 25 \text{ }^\circ\text{C}$	± 0.8	%
ε_L	Linearity error	< 0.2	%
I_O	Offset current @ $I_P = 0$, $T_A = 25 \text{ }^\circ\text{C}$	Typ	Max
I_{OT}	Temperature variation of I_O	± 0.2	± 0.2
t_{D90}	Delay time ¹⁾ to 90 % of the final output value for U_{PN} step 40		μs

General data

T_A	Ambient operating temperature	-40 ... +70	$^\circ\text{C}$
$T_{A\text{st}}$	Ambient storage temperature	-45 ... +90	$^\circ\text{C}$
R_P	Resistance of secondary winding @ $T_A = 70 \text{ }^\circ\text{C}$	1.73	$\text{K}\Omega$
R_S	Secondary coil resistance @ $T_A = 70 \text{ }^\circ\text{C}$	39	Ω
m	Mass	60	g
	Standard	EN 50155: 2021	

Note: ¹⁾ For a $di/dt = 100 \text{ A}/\mu\text{s}$.

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Principle of use

- For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R_1 which is selected by the user and installed in series with the primary circuit of the transducer.

Special features

- $I_{SN} = 50 \text{ mA}$
- $N_P/N_S = 5400 : 710$
- $T_A = -40 \text{ }^\circ\text{C} \dots +70 \text{ }^\circ\text{C}$.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- High immunity to external interference.

Applications

- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- Battery chargers.

Application Domain

- Railway (fixed installations and onboard).

Voltage Transducer LV 25-P/SP17 (in mm. 1 mm = 0.0394 inch)

Insulation coordination

d_{Cp}	Creepage distance	19.5	mm
d_{Cl}	Clearance	19.5	mm
CTI	Comparative tracking index (group IIIa)	600	

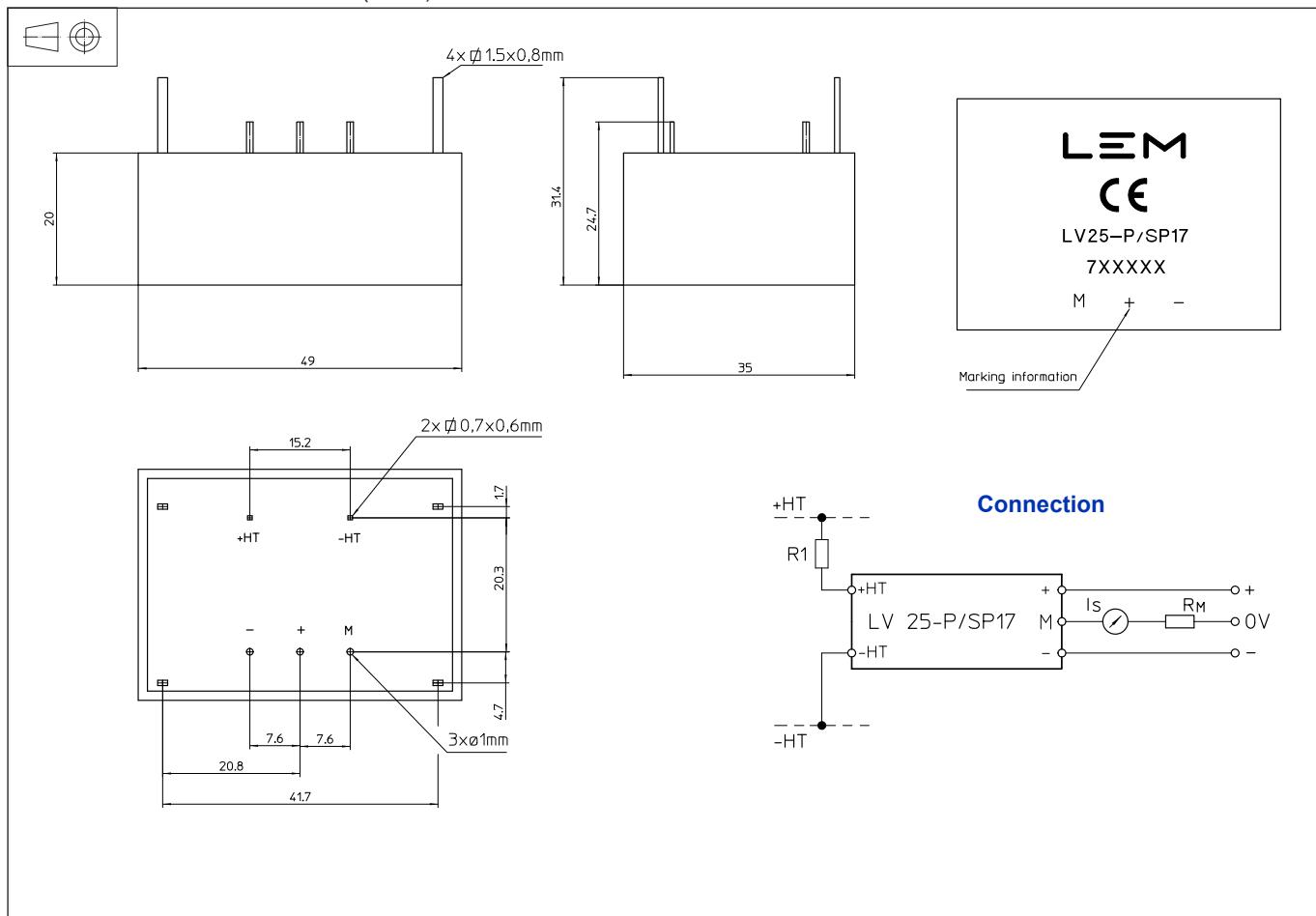
Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).


Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LV 25-P/SP17 (in mm)

Mechanical characteristics

- General tolerance ± 0.2 mm
- Fastening & connection of primary 2 pins
- Fastening & connection of secondary 0.7×0.6 mm
- Recommended PCB hole for primary and secondary connections 3 pins $\varnothing 1$ mm
- Recommended PCB hole for pins of transducer's fixation $\varnothing 1.2$ mm
-
-
-
-

Remarks

- I_s is positive when U_p is applied on terminal +HV.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: <https://www.lem.com/en/file/3137/download/>.

Instructions for use of the voltage transducer model LV 25-P/SP17

Primary resistor R_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, R_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA.

Example: Voltage to be measured $U_{pN} = 250$ V a) $R_1 = 25 \text{ k}\Omega / 2.5 \text{ W}$, $I_p = 10 \text{ mA}$ Total error = ± 0.9 % of U_{pN} (@ $T_A = +25^\circ\text{C}$)
b) $R_1 = 50 \text{ k}\Omega / 1.25 \text{ W}$, $I_p = 5 \text{ mA}$ Total error = ± 1.5 % of U_{pN} (@ $T_A = +25^\circ\text{C}$)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to R_1 , in order to keep thermal deviation as low as possible) and the insulation, this transducer is suitable for measuring nominal voltages from 10 to 500 V.