クローズドループ技術を使用したトランスデューサーのみ、電源およびその限度を定義する場合に特別な注意が必要です。クローズドループ電流トランスデューサーおよびクローズドループ電圧トランスデューサーの動作原理により、消費電流ICは、一次側ゼロ時の固定部分と、測定される電流・電圧の関数(IS)である部分の2つの部分に分けることができます。2番目の部分は、以下のとおり計算することができます。
「直流」または「定格電流(電圧)」とも呼ばれ、トランスデューサーが伝達可能な最大連続熱電流(電圧)です。
もう1つの定義は、連続動作中に温度が指定値を超えないよう、特定条件下でトランスデューサーを通過することが可能な最大実効電流(電圧)です。これは、50Hzの正弦波信号を使用して測定されます。
トランスデューサーの動作の特徴付けに使用されるステップ応答時間は、一次電流がその最終値の90%に到達する時間とトランスデューサーの出力がその最終振幅の90%に到達する時間の差をいいます。一次電流は、任意のdi/dt傾斜(通常は100A/µs)と、定格電流値IPNに近い振幅を有する電流ステップとして動作する必要があります。

LEMは、反応時間(tra)を、出力信号の立ち上がり時間と、IPNの総変動の10%で取得される信号の立ち上がり時間の差と定義しています。
周波数帯域とは、別途規定されている場合を除き、0Hzと、3dBの減衰量に対応するカットオフ周波数の間の周波数範囲をいいます。信号の振幅および位相が時間に合わせてどれだけ迅速に変化するかを測定した値です。そのため、周波数帯域が大きいほど、信号パラメーターの変動が速くなります。
3dBの減衰量は、![]()
LEMのクローズドループトランスデューサーの大部分は、二極電源電圧(±15 Vなど)とともに使用する仕様となっています。しかしながら、大部分のトランスデューサーは、単一方向電流の測定のため、単極電源から電力供給を受けて動作することもできます。このような場合、以下を考慮する必要があります (solution is not valid for DV and DVL family)。
使用されるトランスデューサーおよび磁性体の種類により、鉄心の残留束(残留磁化)が「磁気オフセット」と呼ばれる別の測定オフセットを誘導します。その値は、直前のコアの励磁により決まり、磁気回路が飽和した後に最大値となります。励磁は、以下の場合に起こる可能性があります。
励磁により発生したオフセットは、以下の場合に消失します。
感度および直線性を測定するため、一次電流DCが0からIPMに設定されたのち、再度–IPMから0に戻されます。
感度Gは、全電流範囲(±IPM間のサイクル)における線形回帰直線の傾きと定義されます。
直線性誤差とは、測定点と線形回帰線の間の正または負の最大差をいい、最大測定値のパーセントで表されます。

磁気オフセットを消去するには、消磁を行う必要があります。消磁サイクルでは、低周波数AC電源を使用してB-Hループ全体を通じてコアを駆動した後、B-H動作点を原点に戻して徐々に励磁を低下させる必要があります。最低でも、全振幅で5サイクルを実施して、サイクルあたり4%以下の速度で円滑に励磁を低下させてください。これには、60Hzで30サイクルまたは500msが必要となります。